

Final Draft

Presentation to the Water Utility Board

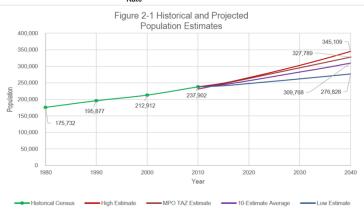
November 24, 2020

Water Master Plan

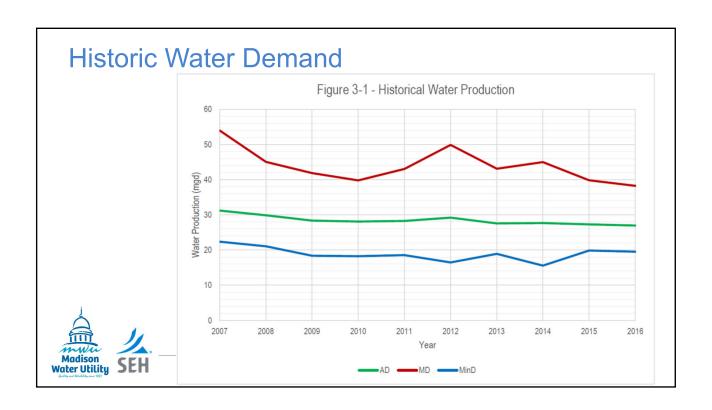
Presentation Outline

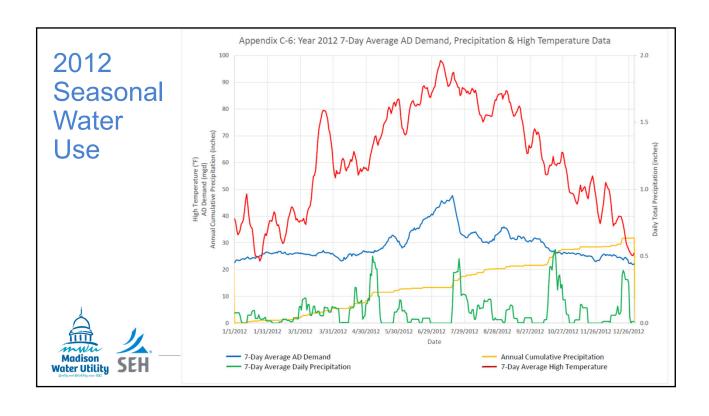
- Growth Projections
- Historic Water Demands
- Conservation Impacts
- Projected Water Needs
- System Analysis
- Capital Improvement Program

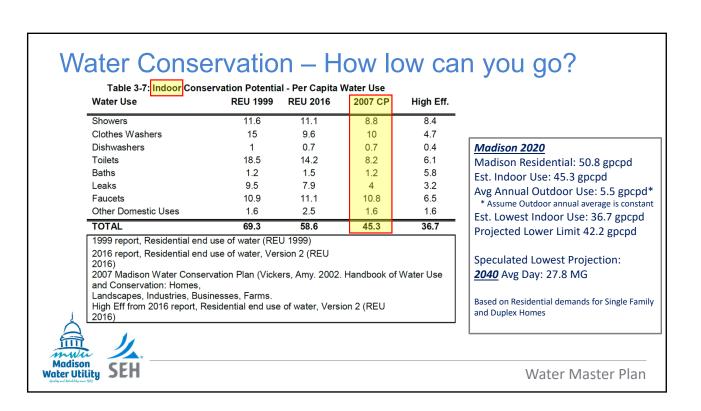
Executive Summary

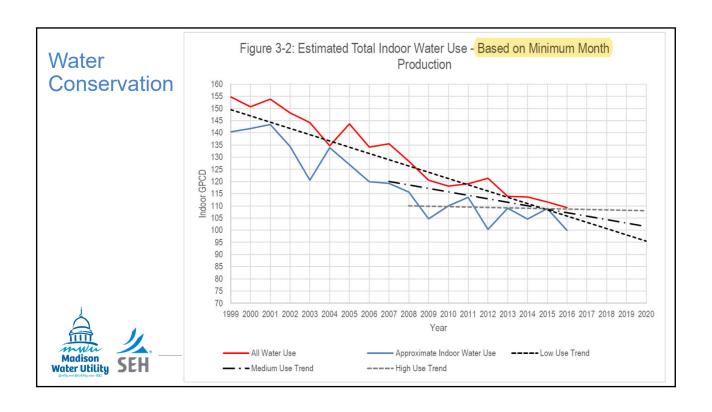

- Master Plan meets WUB Policy for Long Term Planning
- Service Area Population may increase by 24% by 2040
- Water conservation is expected to continue and to improve
 - ✓ System Annual Avg Water demand may increase: 0% to 13%
 - ✓ Drought Max Day to Avg Day demand ratios may decrease 8%
- System is in good shape for fire flow, avg day supply, & pressure
- Drought conditions may stress supply during periods of max demand
- Projects: water quality & facility renewal: \$60M over next 20 yrs
- Pipelines: Renew 7.1 miles per year @ \$9.7M/yr

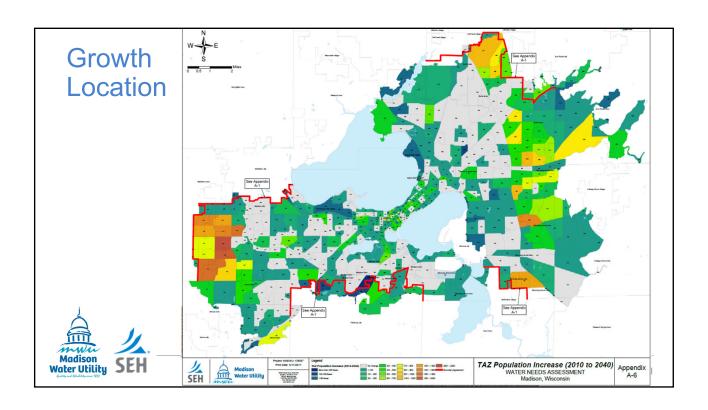
Water Master Plan

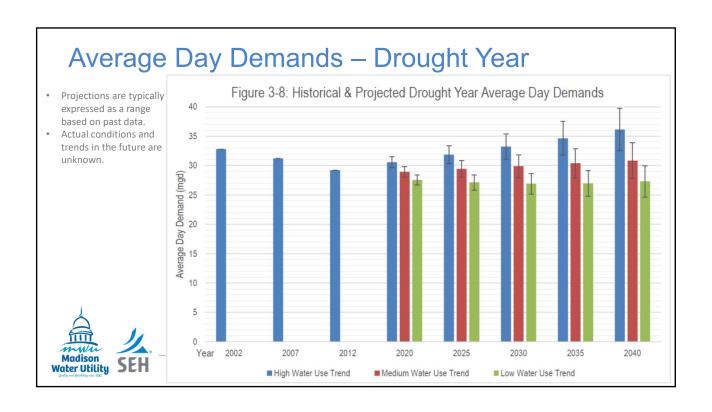

Population Projections

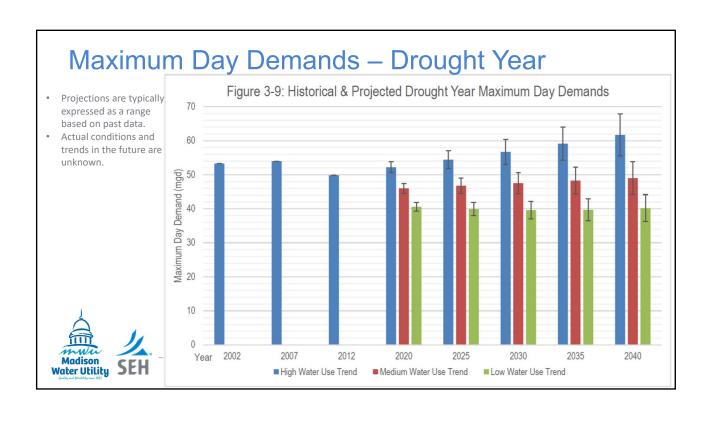

Water Utility SEH


Table 2-3: Draft Population Estimates Provided by DPCED									
Year	10-Estimate Average	10-Estimate Average	High Estimate	High Estimate	Low Estimate	Low Estimate			
	Population	Households	Population	Households	Population	Households			
2015	244,704	109,885	248,956	113,500	241,177	108,151			
2020	256,496	116,099	265,756	120,798	247,919	112,690			
2025	269,510	122,971	283,695	130,135	254,850	116,904			
2030	282,622	129,454	302,844	139,560	261,975	120,726			
2035	295,575	136,266	323,287	150,366	269,299	125,255			
2040	309,768	143,135	345,109	161,266	276,828	129,359			
Annual Growth	0.95%	1.06%	1.31%	1.41%	0.55%	0.72%			



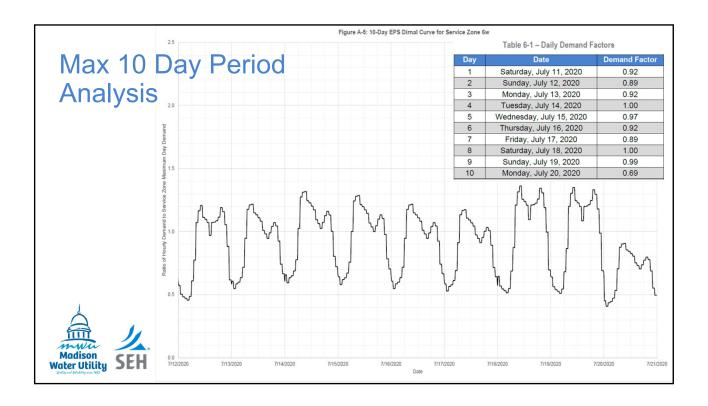

Historic Water	Dema	nd				
	Table 3-1: Historical Water Production					
	Year	AD (mgd)	MD (mgd)	MD:AD Ratio	MinD (mgd)	MinD:AD Ratio
_	2007	31.2	54.0	1.73	22.4	0.72
	2008	29.9	45.1	1.51	21.1	0.70
	2009	28.4	41.9	1.48	18.4	0.65
	2010	28.1	39.8	1.42	18.3	0.65
	2011	28.3	43.0	1.52	18.6	0.66
Last Drought Year	2012	29.2	49.9	1.71	16.5	0.56
	2013	27.6	43.1	1.56	18.9	0.69
	2014	27.7	45.0	1.63	15.6	0.56
	2015	27.3	39.8	1.46	19.8	0.73
	2016	27.0	38.3	1.42	19.5	0.72
-	Maximum	31.2	54.0	1.73	22.4	0.73
	90th Percentile	30.0	50.3	1.71	21.2	0.72
Mulison CEU	5-year Average	27.7	43.2	1.56	18.1	0.65
Water Utility SEN	Minimum	27.0	38.3	1.42	15.6	0.56





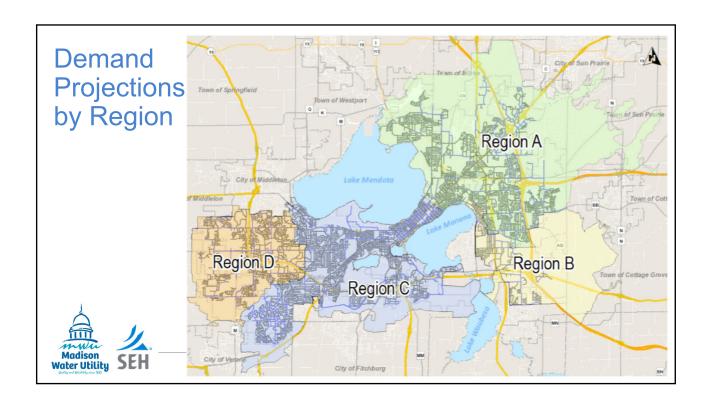
Hydraulic Analysis Criteria

- Use AMI water demand data
- Recalibrate the system computer model to current conditions
- Develop manageable analysis areas
 ✓ Regions and Geographical Areas
- Assume 3 wells are out of service in the analysis area
- WUB policy requires redundancy and reliability
- Evaluate Avg Day, Max Day, Max 10-Day demand patterns
- Fire Flow capacity
- Water Transfer Potential between zones


SEH Water Master Plan

Modeling Analysis

- Identify System Deficiencies
- Design Period
 - ✓2020 = Short Term
 - ✓ 2040 = Long Term
- Extended Period Computer Simulation Max 10 Day
- Develop Alternatives to Mitigate Deficiencies
- Test Alternatives
- Refine Alternative and Retest



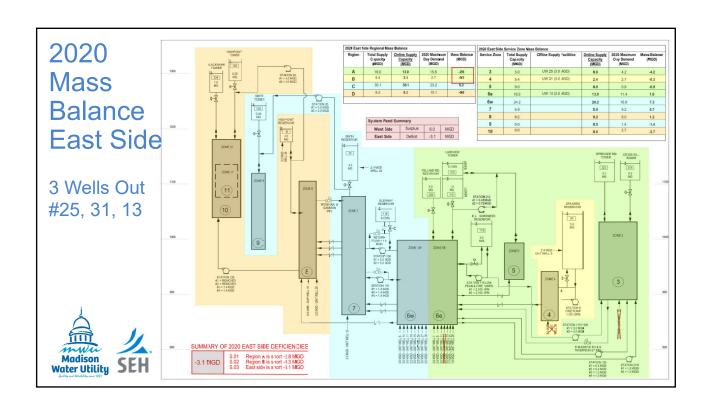
Water Supply Mass Balance

- Evaluate regional water demand projections
- ID areas of need
- ID areas of surplus
- Evaluate pumping water from area of surplus to area of need
- · Consolidate geographical areas, east and west
- Develop alternatives that mitigate deficiencies

Mass Balance – Region D - (Zones 6w, 7 & 9)

	Design Year				
Supply Capacity Analysis		2025	2030	2035	2040
Condition 1 - Average Day Capacity					
Average Day Demand (mgd) ²	4.5	4.7	4.8	5.0	5.1
Existing 12-Hour Pumping Capacity (mgd) ³			4.6		
12-Hour Capacity Mass Balance (mgd) ⁴	0.1	-0.1	-0.2	-0.4	-0.5
Condition 2a - Maximum Day Capacity					
Maximum Day Demand (mgd) ¹	10.1	10.8	11.5	12.2	12.9
Existing Firm Supply Capacity (mgd) ³			6.0		
Firm Capacity Mass Balance (mgd) ⁴		-4.8	-5.5	-6.2	-6.9
Condition 2b - 115 % Maximum Day Capacity					
115 % Maximum Day Demand (mgd)		12.4	13.2	14.0	14.8
Existing Total Pumping Capacity (mgd) ³			9.2		
115 % Max Day Capacity Mass Balance (mgd) ⁴	-2.4	-3.2	-4.0	-4.8	-5.6

See Appendix G of Chapter 2-2 (Water Needs Analysis Report).
 See Appendix F of Chapter 2-2.
 See Appendix D of Chapter 3 (Hydraulic Analysis Report).

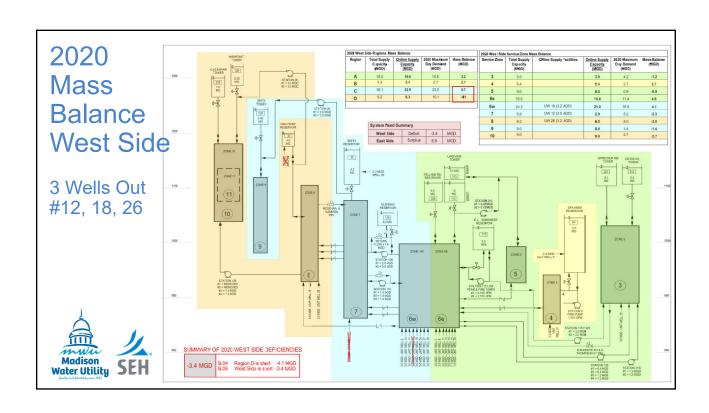

⁴ Positive numbers equals the potential pumping capacity surplus. Negative numbers equal the pumping capacity deficit.

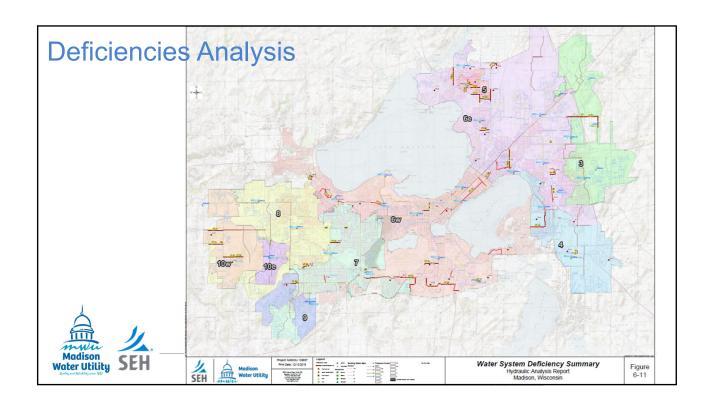
EAST SIDE ANALYSIS

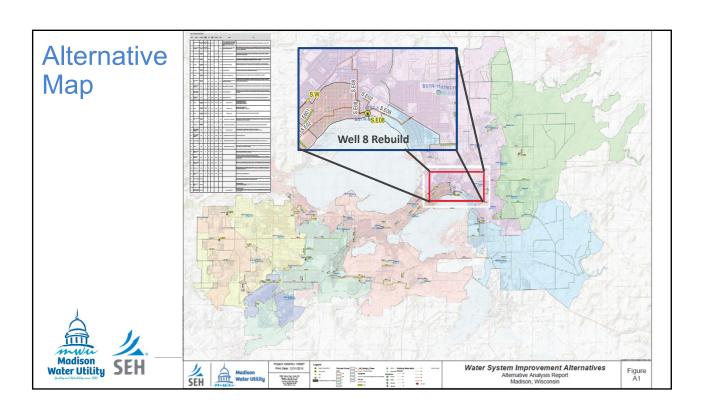
	Design Year				
Supply Capacity Analysis	2020	2025	2030	2035	2040
Condition 1 - Average Day Capacity					
Average Day Demand (mgd) ²	10.9	11.2	11.5	11.7	12.0
Existing 12-Hour Pumping Capacity (mgd) ³			13.8		
12-Hour Capacity Mass Balance (mgd)⁴	2.9	2.6	2.3	2.1	1.8
Condition 2a - Maximum Day Capacity					
Maximum Day Demand (mgd) ¹	18.5	19.3	20.1	20.9	21.6
Existing Firm Supply Capacity (mgd) ³			15.4		
Firm Capacity Mass Balance (mgd) ⁴		-3.9	-4.7	-5.5	-6.2
Condition 2b - 115 % Maximum Day Capacity					
115 % Maximum Day Demand (mgd)	21.3	22.2	23.1	24.0	24.9
Existing Total Pumping Capacity (mgd) ³		_	24.4		
115 % Max Day Capacity Mass Balance (mgd) ⁴	3.1	2.2	1.3	0.4	-0.5

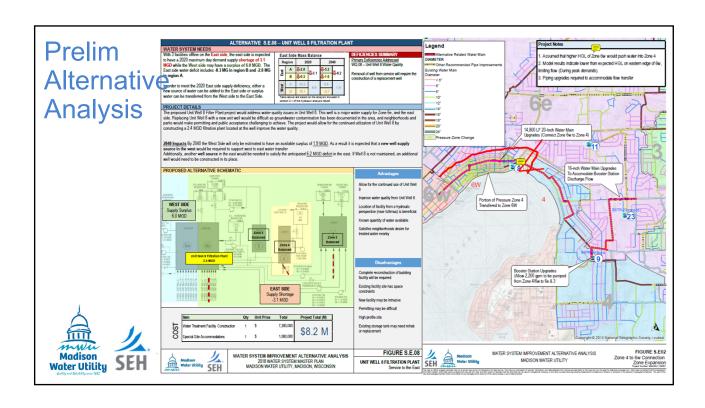
- See Appendix G of Chapter 2-2 (Water Needs Analysis Report).
 See Appendix F of Chapter 2-2.
- ³ See Appendix D of Chapter 3 (Hydraulic Analysis Report).
- ⁴ Positive numbers equals the potential pumping capacity surplus. Negative numbers equal the pumping capacity deficit.

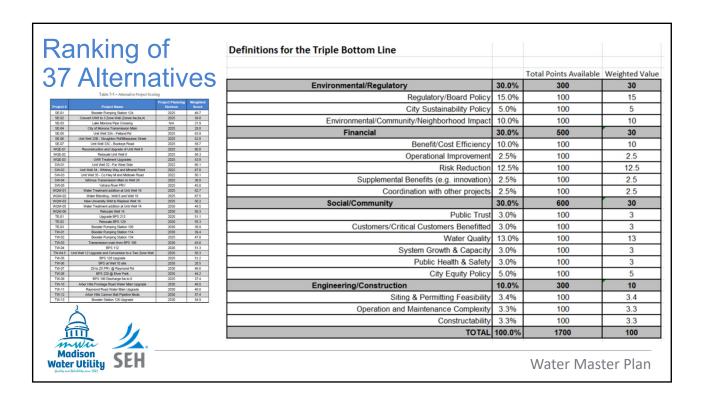
WEST SIDE ANALYSIS


	Design Year				
Supply Capacity Analysis		2025	2030	2035	2040
Condition 1 - Average Day Capacity					
Average Day Demand (mgd) ²	18.3	18.5	18.7	18.9	19.0
Existing 12-Hour Pumping Capacity (mgd) ³ 19.6					
12-Hour Capacity Mass Balance (mgd)⁴	1.3	1.1	0.9	0.7	0.6
Condition 2a - Maximum Day Capacity					
Maximum Day Demand (mgd) ¹	33.3	34.4	35.4	36.4	37.4
Existing Firm Supply Capacity (mgd) ³			29.9		
Firm Capacity Mass Balance (mgd) ⁴		-4.5	-5.5	-6.5	-7.5
Condition 2b - 115 % Maximum Day Capacity					
115 % Maximum Day Demand (mgd)		39.5	40.7	41.8	43.0
Existing Total Pumping Capacity (mgd) ³			39.3		
115 % Max Day Capacity Mass Balance (mgd) ⁴	1.0	-0.2	-1.4	-2.5	-3.7



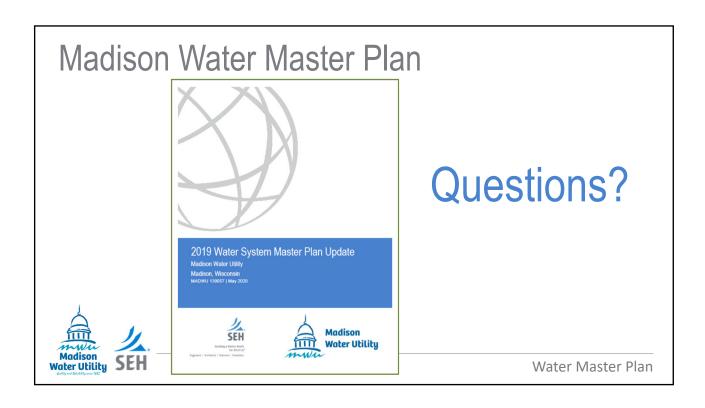

- See Appendix G of Chapter 2-2 (Water Needs Analysis Report).
- See Appendix F of Chapter 2-2.
- See Appendix P of Ghapter 2-2.


 See Appendix D of Chapter 3 (Hydraulic Analysis Report).


 Positive numbers equals the potential pumping capacity surplus. Negative numbers equal the pumping capacity deficit.

Capital Improvement Program - Facilities

Rank	#	Alternative Title	Score	Year	Budget Cost (\$Million)
1	WQW-01	Water Treatment addition at Unit Well 19	63	2023	\$6.5
2	TW-04	Unit Well 12 Upgrade and Conversion to a Two Zone Well	56	2024	\$4.5
3	TE-01	Upgrade BPS 213	51	2025	\$2.3
4	WQE-01	Reconstruction and Upgrade of Unit Well 8 to 3 zone well	61	2027	\$11.8
5	TW-05	BPS 128 Upgrade	51	2029	\$0.8
6	SW-01	Unit Well 32 - Far West Side	66	2030	\$9.9
7	WQW-08	Well 30 Fe and Mn Filter	60	2032	\$5.5
8	WQW-06	Relocate Well 14	59	2034	\$7.9
9	TW-12	Arbor Hills Cannon Ball Pipeline Mods	57	2036	\$1.4
10	TE-02	Relocate BPS 129	55	2038	\$3.1
11	WQW-07	Well 28 Fe and Mn Filter	54	2040	\$6.5
12	WQW-10	Well 27 Fe, Mn & Radium Filter	54	2042	\$6.5
13	WQW-09	Well 18 Air Stripper	53	2044	\$5.0
14	WQW-10	Well 17 Fe and Mn Filter	52	2046	\$8.0
15	WQW-10	Well 24 Fe and Mn Filter	51	2048	\$6.5


Water Master Plan

Capital Improvement Program - Pipelines

			Annual Cost
<u>Ann</u>	(2020 Dollars)		
Pipe Replacem	nent (Miles):	7.1	
Pipe R	eplacement:	75%	7,254,000
	New Pipe:		957,000
	Pipe Lining:		1,451,000
	A	9,662,000	

