

URBAN DESIGN COMMISSION APPLICATION CITY OF MADISON

This form may also be completed online at: <u>http://www.cityofmadison.com/planning/documents/UDCapplication.pdf</u>

215 Martin Luther King Jr. Blvd; Room LL-100 PO Box 2985; Madison, Wisconsin 53701-2985 Phone: 608.266.4635 | Facsimile: 608.267.8739

Please complete all sections of the application, including the desired meeting date and the type of action requested.

Date Submitted: 6/13/16		Informational Presentation
UDC Meeting Date: 6/27/16		🗌 Initial Approval
Combined Schedule Plan Commission Date (if applicable):		🔀 Final Approval
1. Project Address: 115 S. Paterson Street Project Title (if any): Madison Water Utility - Material & V		ct
2. This is an application for (Check all that apply to this UDC application):	
🛛 New Development 🗌 Alteration to an Existing or Pr	eviously-Approved D	Development
 <u>A. Project Type</u>: Project in an Urban Design District* (public hearing-\$300 fee) Project in the Downtown Core District (DC) or Urban N Suburban Employment Center (SEC) or Campus Institu Planned Development (PD) General Development Plan (GDP) Specific Implementation Plan (SIP) Planned Multi-Use Site or Planned Residential Completion 	/lixed-Use District (U tional District (CI) or	
 <u>B. Signage</u>: Comprehensive Design Review* (public hearing-\$300 fee) Signage Exception(s) in an Urban Design District (public) 		5 Variance* (public hearing-\$300 fee)
C. Other:		
X Please specify: Public Project		
		· · · · · · · · · · · · · · · · · · ·
3. Applicant, Agent & Property Owner Information:		
Applicant Name: Madison Water Utility	Company: City/State:Madison, `	WIZip: 53713
Street Address: 119 East Olin Avenue Telephone: 608) 266-4651 Fax:(608) 266-4426		
Fax:(000) 200-4420	Email:	
Project Contact Person: AI Larson	Company: Madison	Water Utility
Street Address: See Above	City/State:	Zip:
Telephone:() Fax:()	_{Email:} ALarson@ma	idisonwater.org
Project Owner (if not applicant) :		
Street Address:	City/State:	Zip:
Telephone:() Fax:()	Email:	·
4. Applicant Declarations:		
A. Prior to submitting this application, the applicant is required to discuss the application was discussed with on on	e proposed project with U (date of meeting)	rban Design Commission staff. This
B. The applicant attests that all required materials are included in this submit the application deadline, the application will not be placed on an Urban Desi	ttal and understands that	if any required information is not provided by r consideration.
Name of ApplicantAdison Water Utility	Relationship to Propert	
Authorized Signature	Date	16

Madison Water Utility – New Material Storage Building & Vehicle Storage Building Site Redevelopment at 115 South Paterson Street

Project Narrative

The proposed project development is to provide a more respectful and efficient use of the existing Madison Water Utility Vehicle Storage Building Site. Currently the site area north and east of the Vehicle Storage Building is used as yard space for the storage of materials used in repairing of water mains., which includes sand, gravel and spoil from construction sites along with pipes and valves and miscellaneous equipment used to support construction. Also, the existing yard space is now a gravel lot surrounded by chain link fencing.

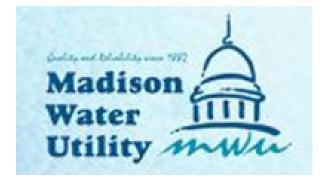
The new building and site development proposes to construct an enclosed materials storage building of 5,380 square feet to house materials of construction, paving of the yard space, a new fence line and site lighting.

To develop the vocabulary for the materials storage building and site development the design team has inspiration from the surrounding area, as depicted in the Context Board and Inspiration Board. The vocabulary for construction on the near east side of the Madison Isthmus is evolving from a predominantly industrial activity to a mixed use of residential, commercial, recreational and industrial. The Madison Water Utilities continuing activities at this site must now reflect development more sympathetic to surrounding activities while maintaining work functions.

The design solution as proposed encloses the less desirable visual elements of the site into a materials storage building constructed of board formed concrete exterior walls, sloped steel framed roof structure and metal roofing and polycarbonate panels, used for infill and daylight integration and visual interest. The yard will be paved with concrete and the lot will be surrounded by new fencing, similar to Central Park, and a new landscaped terrace that integrates plant materials with concrete site knee walls that border the property and will also provide points of interest by containing elements of the Water Utilities work product, such as pipes and valves. The site will be lighted by new LED fixtures, designed for night sky and light penetration cut off. Also, included is a rain water harvesting system to capture roof water from the Vehicle Storage building in a 30,000 gallon holding tank and using that water as vehicle wash water.

The Proposed design solution is based on a functional and aesthetic integration that starts the discussion on the maintenance of industrial activities into an evolving neighborhood dynamic.

Luminaire Schedule Cut Sheets

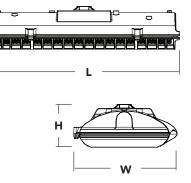

For

Madison Water Utility

Vehicle Storage Renovation and Material Storage Building – Urban Design Commission

13 July 2016

Prepared by:



d"series

Specifications

Length:	17-3/4" (45.1 cm)
Width:	8-1/2'' (21.6 cm)
Height:	3-7/16" (8.7 cm)
Weight (max):	16 lbs (7.3 kg)

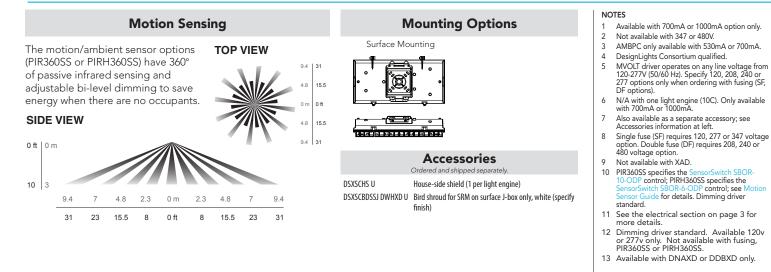
Catalog Number

Notes

^{Type} M1

Hit the Tab key or mouse over the page to see all interactive elements

Introduction


The D-Series LED Surface Canopy luminaire is ideal for covered walkways or drive-thrus, semicovered outdoor aisles, and walk-in coolers and freezers. Its five optical choices provide the design flexibility to potentially reduce luminaire counts while still meeting IES criteria, lowering overall energy consumption.

Its expected service life of over 100,000 hours (20 years of nighttime operation) combined with the available motion/ambient sensor offers an extremely low maintenance solution that yields quick payback.

Ordering Information

EXAMPLE: DSXSC LED 20C 700 40K T5M MVOLT SRM DWHXD

DSXSC LED															
Series	LEDs		Drive c	urrent	Color ter	mperature	Distrik	oution	Voltage	Mountin	ıg	Options		Finish (required)	
(DSXSC LED)	10C 20C 30C	10 LEDs (one engine) ^{1,2} (20 LEDs (two engines) 30 LEDs (three engines)	350 530 700 1000	350 mA 530 mA (700 mA) 1000 mA (1 A)	30K 40K 50K AMBPC	3000 K (4000 K) 5000 K Amber phosphor converted ³	T5E (T5M) T5W T5R ASY	Type V, entryway ⁴ (Type V, medium) Type V, wide Type V, rectangular Asymmetric	MVOLT ⁵ 120 ⁵ 208 ⁵ 240 ⁵ 277 ⁵ 347 ⁶ 480 ⁶	Shippe SRM	d included Surface mount	Shipped in DMG HS SF DF PIR360SS PIRH360SS SPD XAD CFMH Shipped se BDS	(0-10V dimming driver (no controls) House-side shield (housing visor) ⁷ Single fuse (120, 277, 347V) ^{8,9} Double fuse (208, 240, 480V) ^{8,9} Motion/ambient sensor, 8-15' mounting height ^{9,10} Motion/ambient sensor, 15-30' mounting height ^{9,10} Separate surge protection ¹¹ XPoint Wireless enabled ¹² Cover finish matches housing ¹³	DWHXD DNAXD DDBXD	White (Natural) aluminum) Dark bronze

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Actual performance may differ as a result of end-user environment and application. Actual wattage may differ by +/- 8% when operating between 120-480V +/- 10%.

Light -	Drive Current	Dorformoner	Sustam	Dist.			30K					40K					50K		
Light Engines	Drive Current (mA)	Performance Package	System Watts			(300) K, 80 CF				(4000) K, 70 Cl				(5000) K, 65 Cl		
Litymes		гаскауе	Walls	Туре	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW	Lumens	В	U	G	LPW
				ASY	1,792	0	0	1	69	2,253	1	0	1	87	2,428	1	0	1	93
				T5E	1,882	1	0	0	72	2,366	1	0	0	91	2,550	1	0	0	98
	700 mA	10C 700K	26W	T5M	1,889	1	0	0	73	2,375	2	0	0	91	2,560	2	0	0	98
10C				T5R	1,860	2	0	2	72	2,339	2	0	2	90	2,521	2	0	2	97
				T5W	1,771	2	0	1	68	2,226	2	0	1	86	2,399	2	0	1	92
(10 LEDs)				ASY T5E	2,444 2,566	1	0	1	66 69	3,074 3,227	1	0	1	83 87	3,314 3,479	1	0	0	90 94
(10 LLD3)	1000 mA	10C1000K	37W	T5M	2,500	2	0	0	70	3,227	2	0	1	88	3,479	2	0	1	94
	1000 111	1001000 K	5/11	T5R	2,537	2	0	2	69	3,191	2	0	2	86	3,440	3	0	3	93
				T5W	2,414	2	0	1	65	3,037	2	0	1	82	3,274	3	0	1	88
	1			ASY	1,995	1	0	1	80	2,511	1	0	1	100	2,705	1	0	1	108
				T5E	2,095	1	0	0	84	2,637	1	0	0	105	2,840	2	0	0	114
	350 mA	20C 350K	25W	T5M	2,103	2	0	0	84	2,647	2	0	0	106	2,851	2	0	1	114
				T5R	2,071	2	0	2	83	2,607	2	0	2	104	2,808	2	0	2	112
				T5W	1,971	2	0	1	79	2,481	2	0	1	99	2,672	2	0	1	107
				ASY	2,803	1	0	1	76	3,526	1	0	1	95	3,799	1	0	1	103
				T5E	2,943	2	0	0	80	3,702	2	0	0	100	3,989	2	0	0	108
	530 mA	20C 530K	37W	T5M	2,955	2	0	1	80	3,717	2	0	1	100	4,005	2	0	1	108
20C				T5R	2,910	2	0	2	79	3,660	3	0	3	99	3,944	3	0	3	107
				T5W ASY	2,770	2	0	1	75	3,483	3	0	1	94	3,754 4,675	3	0	1	101
(20 LEDs)				T5E	3,621	2	0	0	79	4,554	2	0	0	94	4,075	2	0	0	102
(20 2203)	700 mA	20C 700K	46W	T5M	3,636	2	0	1	79	4,572	3	0	1	99	4,909	3	0	1	107
	700111	200700 1	4010	T5R	3,580	3	0	3	78	4,502	3	0	3	98	4,853	3	0	3	107
				T5W	3,407	3	0	1	74	4,285	3	0	1	93	4,619	3	0	1	100
			İ	ASY	4,632	1	0	1	63	5,828	1	0	1	79	6,283	1	0	2	85
				T5E	4,864	2	0	0	66	6,119	2	0	0	83	6,597	2	0	1	89
	1000 mA	20C 1000K	74W	T5M	4,883	3	0	1	66	6,143	3	1	1	83	6,623	3	0	1	90
				T5R	4,808	3	0	3	65	6,050	3	0	3	82	6,522	3	0	3	88
				T5W	4,577	3	0	1	62	5,758	3	0	2	78	6,207	3	0	2	84
				ASY	3,022	1	0	1	86	3,799	1	0	1	109	4,097	1	0	1	117
				T5E	3,172	2	0	0	91	3,989	2	0	0	114	4,302	2	0	0	123
	350 mA	30C 350K	35W	T5M	3,185	2	0	1	91	4,005	2	0	1	114	4,319	3	0	1	123
				T5R T5W	3,137	2	0	2	90	3,944	3	0	3	113	4,253	3	0	3	122
				ASY	2,985	1	0	1	85 80	3,754 5,333	3	0	1	107	4,048	3		1	116
				T5E	4,239	2	0	0	84	5,599	2	0	0	101	6,035	2	0	0	114
	530 mA	30C 530K	53W	T5M	4,468	3	0	1	84	5,622	3	0	1	100	6,059	3	0	1	114
30C	550 117	50C 550 K	5511	T5R	4,400	3	0	3	83	5,536	3	0	3	100	5,967	3	0	3	113
200				T5W	4,188	3	0	1	79	5,269	3	0	1	99	5,679	3	0	1	107
		İ		ASY	5,170	1	0	1	77	6,504	1	0	2	97	7,011	1	0	2	105
(30 LEDs)				T5E	5,428	2	0	0	81	6,829	3	0	1	102	7,362	3	0	1	110
(30 LEDS) 700 mA	30C 700K	67W	T5M	5,450	3	0	1	81	6,856	3	0	1	102	7,391	3	0	2	110	
			T5R	5,367	3	0	3	80	6,752	3	0	3	101	7,278	3	0	3	109	
				T5W	5,108	3	0	1	76	6,426	3	0	2	96	6,927	3	0	2	103
				ASY	6,775	1	0	2	63	8,520	2	0	2	80	9,187	2	0	2	86
				T5E	7,113	3	0	1	66	8,946	3	0	1	84	9,646	3	0	1	90
	1000 mA	30C 1000K	107W	T5M	7,141	3	0	1	67	8,982	3	0	2	84	9,685	3	0	2	91
				T5R	7,032	3	0	3	66	8,845	4	0	4	83	9,537	4	0	4	89
	1			T5W	6,693	3	0	2	63	8,418	4	0	2	79	9,077	4	0	2	85

Note: Available with phosphor-converted amber LEDs (nomenclature AMBPC). These LEDs produce light with 97+% >530 nm. Output can be calculated by applying a 0.7 factor to 4000 K lumen values and photometric files (for 530mA and 700mA drive currents only).

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

Aml	pient	Lumen Multiplier
0°C	32°F	1.02
10°C	50°F	1.01
20°C	68°F	1.00
25°C	77°F	1.00
30°C	86°F	1.00
40°C	104°F	0.98

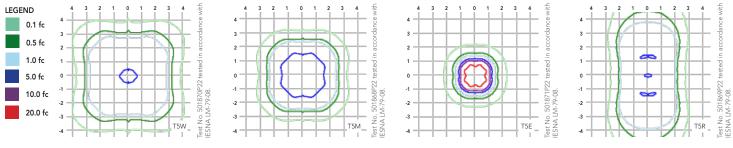
Electrical Load

		•						
					Curre	nt (A)		
LEDs	Drive Current (mA)	System Watts	120	208	240	277	347	480
10C	700	26W	0.25	0.15	0.13	0.11	-	-
100	1000	37W	0.37	0.21	0.18	0.16	-	-
	350	25W	0.23	0.13	0.12	0.10	-	-
	530	37W	0.33	0.19	0.17	0.14	-	-
20C	700	46W	0.43	0.25	0.22	0.19	0.15	0.11
	1000	74W	0.68	0.39	0.34	0.29	_	-
	350	35W	0.33	0.19	0.16	0.14	_	_
	530	53W	0.50	0.29	0.25	0.22	_	-
30C	700	67W	0.66	0.38	0.33	0.29	0.23	0.17
	1000	107W	1.01	0.58	0.50	0.44	-	-

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.


Operating Hours	0	25,000	50,000	100,000					
		DSXSC LED	0 10C 1000						
	1.0	0.97	0.94	0.90					
Lumen Maintenance		DSXSC LED 30C 1000							
Factor	1.0	0.93	0.89	0.80					
		DSXSC LEI	D 30C 700						
	1.0	0.98	0.97	0.95					

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Parking Garage homepage.

Isofootcandle plots for the DSXSC LED 30C 700 40K. Distances are in units of mounting height (8').

FEATURES & SPECIFICATIONS

INTENDED USE

The energy savings, long life, and easy-to-install design of the D-Series LED Surface Canopy luminaire make it the smart choice for canopy lighting in commercial, industrial and institutional applications with mounting heights of 8-15'.

CONSTRUCTION

Two-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP66) and is suitable for hose-down.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling.

OPTICS

Precision-molded proprietary acrylic lenses provide five different photometric distributions suited to a variety of canopy and walkway applications. Light engines are available in 3000 K (80 min. CRI), 4000 K (70 min. CRI) or 5000 K (65 min. CRI) configurations.

ELECTRICAL

Light engines consist of 10 high-efficacy LEDs mounted to a metal-core circuit board to maximize heat dissipation and promote long life. The electronic driver has a power factor of >90%, THD <20%, and a minimum 2.5 KV surge rating. When ordering the SPD option, a separate surge protection device is installed within the luminaire which meets a minimum Category C low operation (per ANSI/IEEE C62.41.2).

INSTALLATION

Mounts to a 4x4" recessed or surface mount outlet box using a quick-mount kit (included); kit contains galvanized steel luminaire and outlet box plates and a full pad gasket. Kit has an integral mounting support that allows the luminaire to hinge down for easy electrical connections. Luminaire and plates are secured with captive screws. Supply leads are 12" in length as standard. For longer supply leads, please consult factory.

LISTINGS

CSA certified to U.S. and Canadian standards. Light engines and luminaire are IP66 rated. Rated for -40°C minimum ambient.

DesignLights Consortium® (DLC) qualified product — Fuel Pump Canopy Luminaires category. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org to confirm which versions are qualified.

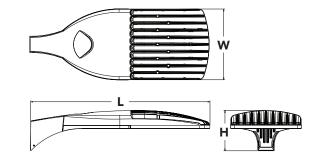
WARRANTY

Five-year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.

Note: Specifications subject to change without notice.

D-Series Size 1

LED Area Luminaire


facts

d"series

Specifications

EPA:	1.2 ft ² (0.11 m ²)
Length:	33" (83.8 cm)
Width:	13" (33.0 cm)
Height:	7-1/2" (19.0 cm)
Weight (max):	27 lbs (12.2 kg)

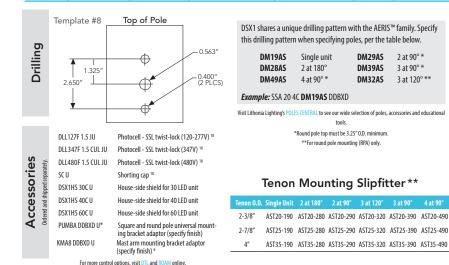
Catalog Numbe

Notes

Туре OA1

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment.


The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire. The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing 100 -400W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

EXAMPLE: DSX1 LED 60C 1000 40K T3M MVOLT SPA DDBXD

Ordering Information

DSV1 LEE

DSX1 LED									
Series	LEDs	Drive current	Color temperature	Distribution	Voltage	Mounting	Control options	Other options	Finish (required)
DSX1 LED	Forward optics 30C 30 LEDs (one engine) 40C 40 LEDs (two engines) 60C 60 LEDs (two engines) Rotated optics 1 60C 60 LEDs (two engines)	530 530 mA 700 (700 mA 1000 1000 mA (1 A)	30K 3000 K (80 CRI min.) (40K) (4000 K (70) (CRI min.)) 50K 5000 K(70 CRI) AMBPC Amber phosphor converted ²	T1SType I shortT2SType II shortT2MType II mediumT3SType III shortT3MType III mediumT4MType IV mediumTFTMForward throw mediumT5VSType V very shortT5SType V shortT5MType V mediumT5WType V wide	MVOLT ³ 120 ³ 208 ³ 240 ³ 277 ³ 347 ⁴ 480 ⁴	Shipped included SPA Square pole, mounting RPA Round pole mounting WBA Wall bracket SPUMBA Square pole universal mounting adaptor 5 RPUMBA Round pole universal mounting adaptor 5 Shipped separately 6 KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish)	Shipped installed PER NEMA twist-lock receptade only (no controls) ⁷ DMG 0-10V dimming driver (no controls) ⁸ DCR Dimmable and controllable via ROAM [®] (no controllable Notion sensor, 8-15 mounting height ¹² PIRH Motion sensor, (15-30'mounting) height ¹² BL30 Bi-level switched dimming, 30% ^{11,13} BL50 Bi-level switched dimming, 50% ^{11,13}	Shipped installedHSHouse- side shield 14WTBUtility terminal block 15SFSingle fuse (120, 277, 347V) 16DFDouble fuse (208, 240, 480V) 16L90Left rotated optics 17R90Right rotated optics 17	DDBXDDark bronzeDBLXDBlackDNAXDNatural aluminumDWHXDWhiteDDBTXDTextured dark bronzeDBLBXDTextured blackDNATXDTextured natural aluminumDWHGXDTextured white

NOTES

3

Rotated optics only available with 60C. AMBPC only available with 530mA or 700mA

- MVDLT driver operates on any line voltage from 120-277V (50/60 Hz). Specify 120, 208, 240 or 277 options only when ordering with fusing (SF, DF options). Not available with single board, 530mA product (30C 530, or 60C 530 DS). Not available with DCR, BL30 or BL50. 4
- Available as a separate combination accessory: PUMBA (finish) U.
- Must be ordered as a separate accessory; see Accessories information. For use
- with 2-3/8" mast arm (not included). Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Not available with DS option.
- Controls. See accessories. Not available with DS option. DMG option for 347v or 480v requires 1000mA Specifies a ROAM® enabled luminaire with 0-10V dimming capability; PER option required. Not available with 347 or 480v. Additional hardware and services required for ROAM® deployment; must be purchased separately. Call 1-800-442-6745 or email: sales@roamservices.net. N/A with BL30, BL50, DS, PIR or PIRH.
- Requires 40C or 60C. Provides 50/50 luminaire operation via two independent drivers on two separate circuits. N/A with PER, DCR, WTB, PIR, or PIRH. 10
- Requires an additional switched circuit.
- -ODP control; PIRH specifies the Motion Sensor Guide for details. PIR specifies the 12 SensorSwitch SBGR-6-ODP control; see Motion Sensor C Dimming driver standard. Not available with DS or DCR.
- Dimming driver standard. MVOLT only. Not available with DCR. 13
- Also available as a separate accessory; see Accessories information 14
- 15
- Also available as a separate accessory; see Accessories information. WTB not available with DS. Single fuse (SF) requires 120, 277 or 347 voltage option. Double fuse (DF) requires 208, 240 or 480 voltage option. Available with 60 LEDs (60C option) only. Requires luminaire to be specified with PER option. Ordered and shipped as a discussed in the function of a which Bearded Control 16
- 18 separate line item from Acuity Brands Contro

One Lithonia Way • Conyers, Georgia 30012 • Phone: 800.279.8041 • Fax: 770.918.1209 • www.lithonia.com © 2011-2014 Acuity Brands Lighting, Inc. All rights reserved

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Actual performance may differ as a result of end-user environment and application. Actual wattage may differ by +/- 8% when operating between 120-480V +/-10%. Contact factory for performance data on any configurations not shown here.

LEDs	Drive Current	System		121		30K 0 mini	mum Cl		LA(00 K -	40K 70 minii	mum C			(500	50K 10 K, 70	(RI)	
	(mA)	Watts	Туре	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW	Lumens	(500 B	U K, 70 U	G	LPV
			T1S	5,290	1	0	1	78	6,524	2	0	2	96	7,053	2	0	2	10
			T2S	5,540	1	0	1	81	6,833	2	0	2	100	7,387	2	0	2	10
			T2M	5,360	1	0	2	79	6,611	2	0	2	97	7,147	2	0	2	10
			T3S	5,479	1	0	1	81	6,757	1	0	2	99	7,305	2	0	2	10
			T3M	5,452	1	0	2	80	6,724	2	0	2	99	7,269	2	0	2	10
	700 mA	68 W	T3M T4M	5,461	1	0	2	80	6,736	2	0	2	99	7,203	2	0	2	10
	700 IIIA	00 W	TFTM	5,378	1	0	2	79	1	1	0	2	99	1	1	0	2	10
			T5VS	5,708	2	0	0	84	6,633 7,040	3	0	0	104	7,171	3	0	1	11
				<u> </u>	2	0	0	83	1	2	0	0	104	7,611	3	0	0	11
			T5S	5,639					6,955	<u> </u>		<u> </u>		7,519	<u> </u>		<u> </u>	
30C			T5M	5,710	3	0	1	84	7,042	3	0	1	104	7,613	3	0	2	11
			T5W	5,551	3	0	1	82	6,847	3	0	2	101	7,401	3	0	2	10
(30 LEDs)			T1S	7,229	2	0	2	69 72	9,168	2	0	2	87	9,874	2	0	2	9
			T2S	7,572	2	0	2	72	9,603	2	0	2	91	10,342	2	0	2	98
			T2M	7,325	2	0	2	70	9,291	2	0	2	88	10,005	2	0	3	9
			T3S	7,488	2	0	2	71	9,496	2	0	2	90	10,227	2	0	2	9
			T3M	7,451	2	0	2	71	9,450	2	0	2	90	10,177	2	0	2	9
	1000 mA	105 W	T4M	7,464	2	0	2	71	9,467	2	0	2	90	10,195	2	0	2	97
			TFTM	7,351	1	0	2	70	9,323	2	0	2	89	10,040	2	0	3	96
			T5VS	7,801	3	0	1	74	9,894	3	0	1	94	10,655	3	0	1	10
			T5S	7,803	3	0	2	74	9,774	3	0	1	93	10,526	3	0	1	10
			T5M	7,707	3	0	0	73	9,897	3	0	2	94	10,658	4	0	2	10
			T5W	7,586	3	0	2	72	9,621	4	0	2	92	10,363	4	0	2	9
			T1S	6,876	2	0	2	77	8,639	2	0	2	97	9,345	2	0	2	10
			T2S	7,202	2	0	2	81	9,049	2	0	2	102	9,788	2	0	2	11
			T2M	6,968	2	0	2	78	8,755	2	0	2	98	9,469	2	0	3	10
			T3S	7,122	2	0	2	80	8,948	2	0	2	101	9,679	2	0	2	10
			T3M	7,088	2	0	2	80	8,905	2	0	2	100	9,632	2	0	2	10
	700 mA	89 W	T4M	7,100	2	0	2	80	8,920	2	0	2	100	9,649	2	0	2	10
			TFTM	6,992	1	0	2	79	8,785	2	0	2	99	9,502	2	0	2	10
			T5VS	7,421	3	0	0	83	9,323	3	0	1	105	10,085	3	0	1	11
			T5S	7,331	2	0	0	82	9,210	3	0	1	103	9,962	3	0	1	11
40C		T5M	7,423	3	0	2	83	9,326	3	0	2	105	10,087	4	0	2	11	
40C			T5W	7,216	3	0	2	81	9,066	4	0	2	102	9,807	4	0	2	11
			T1S	9,521	2	0	2	69	11,970	2	0	2	87	12,871	3	3	0	9
(40 LEDs)			T2S	9,972	2	0	2	72	12,558	3	0	3	91	13,481	3	0	3	9
			T2M	9,648	2	0	3	70	12,149	3	0	3	88	13,043	3	0	3	9
			T3S	9,862	2	0	2	71	12,418	2	0	2	90	13,331	2	0	2	9
			T3M	9,814	2	0	2	71	12,358	3	0	3	90	13,267	3	0	3	90
	1000 mA	138 W	T4M	9,831	2	0	2	71	12,379	2	0	3	90	13,290	2	0	3	9
	10001111	15011	TFTM	9,681	2	0	2	70	12,191	2	0	3	88	13,087	2	0	3	9
			T5VS	10,275	3	0	1	74	12,937	3	0	1	94	13,890	4	0	1	10
			T5S	10,275	3	0	1	74	12,782	3	0	1	93	13,721	3	0	1	9
			T5M	10,130	4	0	2	74	12,942	4	0	2	94	13,894	4	0	2	10
			T5W	9,991	4	0	2	74	12,542	4	0	2	91	13,507	4	0	2	9
			1		2	0	2	72	1	4	0	3	91	1	4	0	3	10
			T1S T2S	10,226	2	0	2	82	12,871 13,481	3	0	3	103	13,929 14,589	3		3	11
				1	-	0				<u> </u>	0	<u> </u>		1	<u> </u>	0		<u> </u>
			T2M	10,363	2	0	3	79 81	13,043	3	0	3	100 102	14,115	3		3	10
			T3S	10,592	2	0	2	81 80	13,331 13,267	3		3	102	14,427 14,357	3	0	3	11
	700	121.00	T3M	<u> </u>							<u> </u>	<u> </u>		1	<u> </u>		<u> </u>	
	700 mA	(<mark>131W</mark>)	T4M	10,559	2	0	2	81	13,290	2	0	3	101	14,382	3	0	3	11
			TFTM	10,398	2	0	3	79	13,087	2	0	3	100	14,163	2	0	3	10
			T5VS	11,036	3	0	1	84	13,890	4	0	4	106	15,032	4	0	1	11
			T5S	10,902	3	0	1	83	13,721	3	0	1	105	14,849	4	0	1	1
60C			T5M	11,039	4	0	2	84	13,894	4	0	2	106	15,036	4	0	2	11
			T5W	10,732	4	0	2	82	13,507	4	0	2	103	14,617	4	0	2	1
60 LEDs)			T1S	14,017	3	0	3	67	17,632	3	0	3	84	19,007	3	0	3	9
OU LED?)			T2S	14,681	3	0	3	70	18,467	3	0	3	88	19,908	3	0	3	9
			T2M	14,204	3	0	3	68	17,867	3	0	3	85	19,260	3	0	3	9
			T3S	14,518	3	0	3	69	18,262	3	0	3	87	19,687	3	0	3	9
			T3M	14,448	3	0	3	69	18,173	3	0	4	87	19,591	3	0	4	9
	1000 mA	209 W	T4M	14,473	3	0	3	69	18,205	3	0	3	87	19,625	3	0	4	9
			TFTM	14,253	2	0	3	68	17,928	3	0	4	86	19,326	3	0	4	9
			T5VS	15,127	4	0	1	72	19,028	4	0	1	91	20,512	4	0	1	9
			T5S	14,943	4	0	1	71	18,797	4	0	1	90	20,263	4	0	1	9
			T5M	15,131	4	0	2	72	19,033	4	0	2	91	20,517	5	0	3	9
			T5W	14,710	4	0	2	70	18,503	5	0	3	89	19,946	5	0	3	9

Note: Available with phosphor-converted amber LED's (nomenclature AMBPC). These LED's produce light with 97+% >530 nm. Output can be calculated by applying a 0.7 factor to 4000 K lumen values and photometric files.

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from 0-40°C (32-104°F).

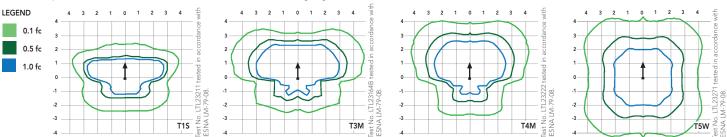
Amt	pient	Lumen Multiplier
0°C	32°F	1.02
10°C	50°F	1.01
20°C	68°F	1.00
25°C	77°F	1.00
30°C	86°F	1.00
40°C	104°F	0.99

Electrical Load

					Curre	nt (A)		
Number of LEDs	Drive Current (mA)	System Watts	120	208	240	277	347	480
	530	52	0.52	0.30	0.26	0.23		
30	700	68	0.68	0.39	0.34	0.30	0.24	0.17
	1000	105	1.03	0.59	0.51	0.45	0.36	0.26
	530	68	0.67	0.39	0.34	0.29	0.23	0.17
40	700	89	0.89	0.51	0.44	0.38	0.31	0.22
	1000	138	1.35	0.78	0.67	0.58	0.47	0.34
	530	99	0.97	0.56	0.48	0.42	0.34	0.24
60	700	131	1.29	0.74	0.65	0.56	0.45	0.32
	1000	209	1.98	1.14	0.99	0.86	0.69	0.50

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a 25°C ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).


To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
		DSX1 LED	60C 1000	
Lumen Maintenance	1.0	0.95	0.93	0.88
Factor		DSX1 LED	0 60C 700	
	1.0	0.99	0.98	0.96

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 1 homepage.

Isofootcandle plots for the DSX1 LED 60C 1000 40K. Distances are in units of mounting height (20').

FEATURES & SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED driver is mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA (1.2 ft?) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard 4000 K (70 minimum CRI) or optional 3000 K (80 minimum CRI) or 5000 K (70 CRI) configurations. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly™ product, meaning it is consistent with the LEED[®] and Green Globes™ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of 30, 40 or 60 high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L96/100,000 hours at 25°C). Class 1 electronic drivers are designed to have a power factor >90%, THD <20%, and an

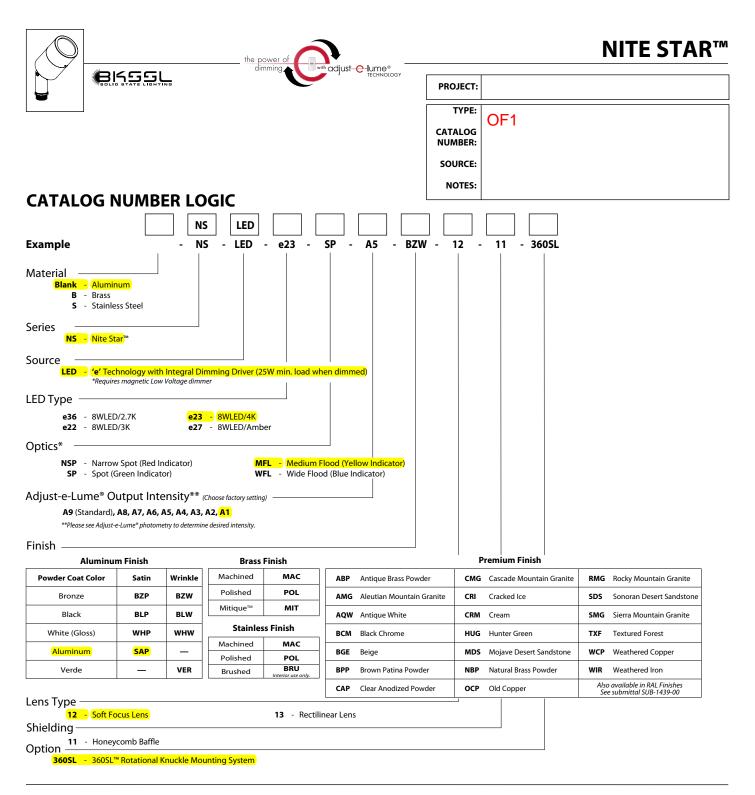
expected life of 100,000 hours with <1% failure rate. Easily serviceable 10kV or 6kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 1 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 1 utilizes the AERISTM series pole drilling pattern. Optional terminal block, tool-less entry, and NEMA photocontrol receptacle are also available.

LISTINGS

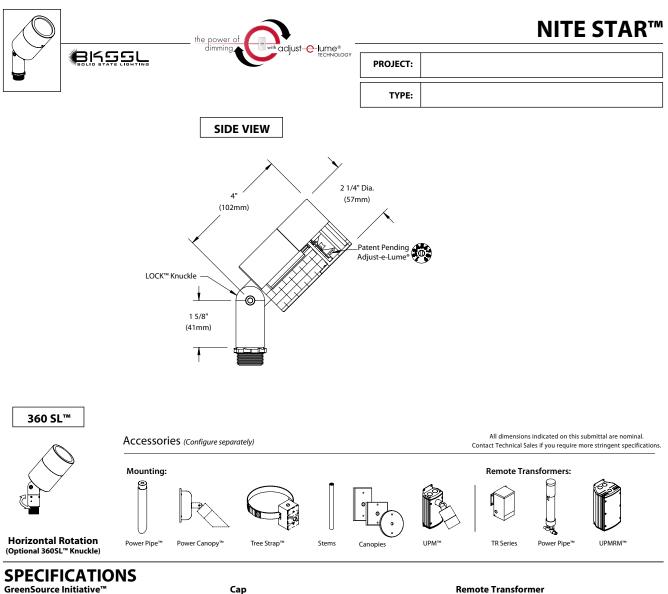
UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for -40°C minimum ambient. U.S. Patent No. D672,492 S. International patent pending.


DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org to confirm which versions are qualified.

WARRANTY

Five-year limited warranty. Full warranty terms located at: www.acuitybrands.com/CustomerResources/Terms and conditions.aspx

Note: Specifications subject to change without notice.



DRIVER DA	ATA <u>Input N</u> 12VAC/DC		InRush Current <1A (non-dimmed)	Dimmable Magnetic Low Voltag	e Dimmer	-	<u>mbient Temperature</u> 0°F-130°F
LM79 DAT	Ά			L70 DATA	*OPTICAL D	ATA	
BK No.	CCT (Typ.)	Input Watts (Typ.)	CRI (Typ.)	Minimum Rated Life (hrs.) 70% of initial lumens (L ₇₀)	Beam Type	Angle	Visual Indicator
e36	2700K	8.4	90	50,000	Narrow Spot	14°	Red Dot
e22	3100K	8.4	90	50,000	Spot	18°	Green Dot
e23	4100K	8.4	75	50,000	Medium Flood	25°	Yellow Dot
e27	Amber (590nm)	7.9	~	50,000	Wide Flood	36°	Blue Dot

40429 Brickyard Drive • Madera, CA 93636 • USA	SUBMITTAL DATE	DRAWING NUMBER
559.438.5800 • FAX 559.438.5900 www.bklighting.com • info@bklighting.com	1-8-14	SUB000929

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF B-K LIGHTING, INC. AND ITS RECEIPT OR POSSESSION DOES NOT CONVEY ANY RIGHTS TO REPRODUCE, DISCLOSE ITS CONTENTS, OR TO MANUFACTURE, USE OR SELL ANYTHING IT MAY DESCRIBE. REPRODUCTION, DISCLOSURE OR USE WITHOUT SPECIFIC WRITTEN AUTHORIZATION OF B-K LIGHTING, INC. IS STRICTLY FORBIDDEN.

Metal and packaging components are made from recycled materials. Manufactured using renewable solar energy, produced onsite. Returnable to manufacturer at end of life to ensure cradle-to-cradle handling. Packaging contains no chlorofluorocarbons (CFC's). Use of this product may qualify for GreenSource efficacy and recycling rebate(s). Consult www.bklighting.com/greensource for program requirements.

Materials

Furnished in Copper-Free Aluminum (Type 6061-T6), Brass (Type 360) or Stainless Steel (Type 304).

Body

Fully machined from solid billet. Unibody design provides enclosed, water-proof wireway and integral heat sink for maximum component life. Integral knuckle for maximum mechanical strength. High temperature, silicone 'O' Ring provides water-tight seal.

Knuckle

The LOCK[™] (Locking 'O' Ring Compression Knuckle) is comprised of two components. The first is integral to the body and features an interior, machined taper. The second is machined from solid billet and features a second, reverse angle taper. The resultant mechanical taper-lock allows a full 180° vertical adjustment without the use of serrated teeth, which inherently limit aiming. High temperature, silicone 'O' Ring provides water-tight seal and compressive resistance to maintain fixture position. Design withstands 73 lb. static load prior to movement to ensure decades of optical alignment. 1/2" pipe thread for mounting.

Optional 360SL[™] additionally provides biaxial source control with 360° horizontal rotation in addition to vertical adjustment.

Fully machined. Accommodates [1] lens or louver media. Flush lens.

Lens

Shock resistant, tempered, glass lens is factory adhered to fixture cap and provides hermetically sealed compartment. Specify soft focus (#12) or rectilinear (#13) lens.

BKSSL®

Integrated solid state system with 'e' technology is scalable field upgrade. Modular design with electrical quick disconnects permit field maintenance. High power, forward throw source complies with ANSI C78.377 binning requirements. Exceeds ENERGY STAR® lumen maintenance requirements. LM-80 certified components.

Integral, constant current driver. 12VAC/VDC input. 50/60Hz. Proprietary input control scheme achieves power factor correction and eliminates inrush current. Output, overvoltage, open-circuit, and short circuit protected. Inrush current limited to <1A (non-dimming). Conforms to Safety Std. C22.2 No. 250.13-12.

Line dimmable. For use with low voltage dimmer with dedicated neutral conductor. Minimum 25 watt load required for dimming.

Adjust-e-Lume® (Pat. Pending)

Integral electronics allows dynamic lumen response at the individual fixture. Indexed (100% to 25% nom.) lumen output. Maintains output at desired level or may be changed as conditions require. Specify factory preset output intensity.

Optics

Interchangeable OPTIKIT[™] modules permit field changes to optical distribution. Color-coded for easy reference: Narrow Spot (NSP) = Red. Spot (SP) = Green. Medium Flood (MFL) = Yellow. Wide Flood (WFL) = Blue.

Remote Transformer

For use with 12VAC (비수도도) remote transformer.

Wiring

Teflon[®] coated, 18AWG, 600V, 250° C rated and certified to UL 1659 standard.

Hardware

Tamper-resistant, stainless steel hardware. LOCK™ aiming screw is additionally black oxide treated for additional corrosion resistance.

Finish

StarGuard®, our exclusive RoHs compliant, 15 stage chromate-free process cleans and conversion coats aluminum components prior to application of Class 'A' TGIC polyester powder coating. Brass components are available in powder coat or handcrafted metal finish. Stainless steel components are available in handcrafted metal finish. (Brushed finish for interior use only).

Warranty

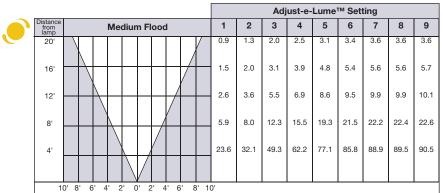
5 year limited warranty.

Certification and Listing ITL tested to IESNA LM-79. Lighting Facts Registration per USDOE (www.lightingfacts.com). ETL Listed to ANSI/UL Standard 1838 and UL Standard 8750. Certified to CAN/ CSA Standard 222.2 No. 9, CSA TIL B-58B. RoHs compliant. Suitable for indoor or outdoor use. Suitable for use in wet locations. Suitable for installation within 4' of the ground. IP66 Rated, Made in USA.

*Teflon is a registered trademark of DuPont Corporation. *Energy. Star is a registered trademark of the United States Environmental Protection Agency.

Photometry for use with e36

Select OptiKit[™] for desired distribution


Set adjust-e-lume™ Dial to desired output

								Adj	ust-e-	Lume	™ Set	ting		
	Distance from lamp	Na	rro	N S	pot	1	2	3	4	5	6	7	8	9
Ī	20'					2.4	3.1	5.0	6.3	7.6	8.9	9.2	9.3	9.3
	16'					3.8	4.9	7.9	9.9	11.9	13.9	14.3	14.6	14.6
	12'			\square		6.7	8.6	14.0	17.6	21.2	24.7	25.5	25.9	25.9
	8'			+		15.1	19.4	31.4	39.7	47.6	55.5	57.3	58.3	58.3
	4'		-	\mid		60.4	77.7	125.8	158.6	190.4	222.1	229.2	233.0	233.2
	4	2	' 0) 2	.' 4									
L							Note:	If using I	lo. 11 hor	eycomb b	oaffle mul	tiply footo	andle val	ues by .80

							Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp		Spo	ot		1	2	3	4	5	6	7	8	9
20'					1.6	2.1	3.3	4.3	5.3	5.9	6.1	6.3	6.3
16'					2.6	3.3	5.2	6.7	8.2	9.3	9.6	9.8	9.9
12'				+	4.5	5.8	9.3	12.0	14.7	16.5	17.0	17.5	17.5
8'			_/		10.2	13.0	20.9	26.9	33.0	37.0	38.3	39.4	39.4
4'		N			40.9	52.1	83.4	107.8	131.9	148.1	153.1	157.5	157.8
		$ \rangle$											
8	6' 4'	2' 0'	2'	4' 6'	8'								

Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

																	Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp						W	ide	Flo	od						1	2	3	4	5	6	7	8	9
20'															0.4	0.6	0.9	1.1	1.4	1.6	1.6	1.7	1.7
16'			\setminus									/			0.7	0.9	1.4	1.8	2.1	2.5	2.6	2.6	2.6
12'												Ĺ			1.2	1.6	2.5	3.2	3.8	4.4	4.6	4.7	4.7
8'															2.7	3.7	5.6	7.2	8.6	10.0	10.3	10.5	10.6
4'									/						10.9	14.8	22.3	28.6	34.3	39.9	41.1	42.2	42.3
14	4' 12	2' 10)' 8	' 6	; 4	' 2	' 0	i' 2	' 4	' 6	5' E	3'1	0' 1:	2'1	4'	-	-			-		-	

Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

adjust <u>P</u>lume


B-K LIGHTING

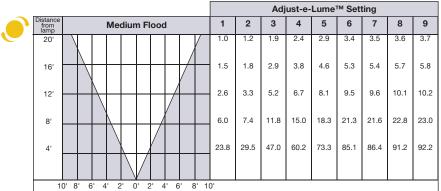
40429 Brickyard Drive • Madera, California 93636 • 559.438.5800 www.bklighting.com • www.adjust-e-lume.com • www.bkssl.com

Photometry for use with e22

Select OptiKit™ for desired distribution

Set adjust-e-lume™ Dial to desired output

					Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp	Narro	w Spot	1	2	3	4	5	6	7	8	9
20'			2.4	2.9	4.9	6.1	7.3	8.8	9.1	9.3	9.3
16'			3.8	4.6	7.6	9.6	11.4	13.8	14.3	14.5	14.6
12'			6.7	8.2	13.5	17.0	20.3	24.5	25.4	25.7	25.9
8'			15.1	18.4	30.3	38.2	45.8	55.2	57.0	57.9	58.2
4'			60.3	73.6	121.3	152.8	183.1	220.9	228.2	231.6	232.8
4	2' ()' 2' 4	ľ		1	1		1	1	1	


TECHNOLOGY

adjust <u>P</u>lume

Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

								Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp		s	pot			1	2	3	4	5	6	7	8	9
20'					/	1.6	2.1	3.1	4.1	4.9	6.0	6.1	6.2	6.3
16'			1			2.5	3.3	4.9	6.4	7.6	9.3	9.6	9.8	9.9
12'			-			4.5	5.9	8.7	11.4	13.5	16.6	17.0	17.3	17.5
8'		$ \rangle $				10.2	13.2	19.5	25.6	30.5	37.3	38.3	39.0	39.4
4'						40.6	52.7	78.1	102.3	121.9	149.1	153.1	156.0	157.8
			\bigvee											
8	6'4	1' 2'	0' 2	2' 4' 6	i' 8	3'					40			ues by 80

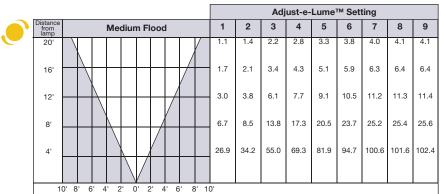
Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

																	Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp						W	ide	Flo	od						1	2	3	4	5	6	7	8	9
20'															0.4	0.5	0.9	1.1	1.3	1.6	1.7	1.7	1.7
16'			\setminus												0.7	0.8	1.4	1.7	2.0	2.4	2.6	2.7	2.7
12'												Ĺ			1.2	1.5	2.5	3.0	3.5	4.3	4.7	4.7	4.7
8'															2.8	3.4	5.5	6.7	7.9	9.8	10.5	10.7	10.7
4'									/						11.1	13.4	22.2	26.8	31.7	39.0	41.9	42.6	42.7
14	4' 12	2' 10)' 8	6	; 4	' 2	' 0	i' 2	' 4	ι' θ	5' 8	3'1	0' 12	2'1	4'	-	-		-	-		-	

Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

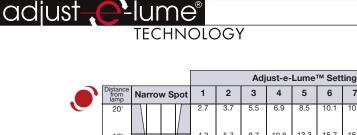
Photometry for use with e23

Select OptiKit™ for desired distribution


Set adjust-e-lume™ Dial to desired output

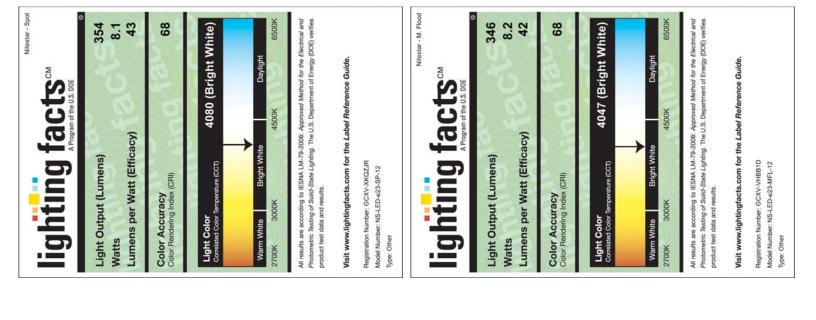
								Adj	ust-e-	Lume	™ Set	ting		
•[Distance from lamp	Na	rro	N S	pot	1	2	3	4	5	6	7	8	9
Ī	20'					2.7	3.7	5.5	6.9	8.5	10.1	10.4	10.6	10.6
	16'					4.3	5.7	8.7	10.8	13.3	15.7	16.2	16.5	16.5
	12'		$\left \right $			7.6	10.2	15.4	19.2	23.6	27.9	28.8	29.3	29.4
	8'		$\left \right $	+		17.1	23.0	34.7	43.2	53.0	62.8	64.8	66.0	66.1
	4'		$\left \right $	+		68.6	91.9	138.6	172.9	212.1	251.3	259.2	263.8	264.3
	4	2		0' 2	2' 4									
L							Note:	If using I	No. 11 hor	eycomb l	oaffle mul	tiply footo	andle val	ues by .80

							Adj	just-e-	Lume	™ Set	ting		
Distance from lamp		Sp	ot		1	2	3	4	5	6	7	8	9
20'					1.9	2.4	3.7	4.8	6.0	6.8	7.1	7.1	7.1
16'					2.9	3.7	5.9	7.4	9.4	10.6	11.0	11.1	11.2
12'					5.2	6.6	10.4	13.2	16.7	18.9	19.6	19.8	19.8
8'		\setminus		/	11.8	14.9	23.4	29.7	37.6	42.5	44.1	44.6	44.6
4'					47.0	59.6	93.6	118.9	150.3	170.1	176.3	178.3	178.6
8	6'4'	2' 0	' 2	' 4' 6'	8'								


Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

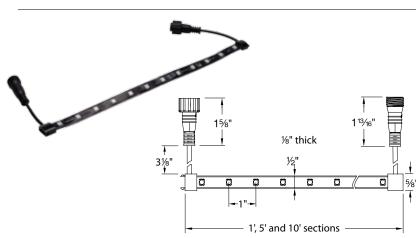
Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

																	Adj	ust-e-	Lume	™ Set	ting		
Distance from lamp						W	ide	Flo	od						1	2	3	4	5	6	7	8	9
20'														/	0.5	0.6	1.0	1.2	1.4	1.7	1.8	1.8	1.8
16'															0.8	1.0	1.5	1.8	2.2	2.7	2.8	2.8	2.9
12'											/	ĺ			1.3	1.8	2.7	3.3	3.9	4.7	4.9	5.0	5.1
8'					A										3.0	4.0	6.0	7.3	8.8	10.7	11.1	11.3	11.4
4'						\setminus									12.0	15.9	23.9	29.3	35.1	42.6	44.4	45.1	45.7
							\setminus																
14	4' 12	2' 10)' 8	6 '	6' 4	' 2	' 0	1'2	' 4	l' 6	6' 8	3' 1	0' 12	2' 1	4'								


, Note: If using No. 11 honeycomb baffle multiply footcandle values by .80

B-K LIGHTING

40429 Brickyard Drive • Madera, California 93636 • 559.438.5800 www.bklighting.com • www.adjust-e-lume.com • www.bkssl.com


Nitestar - N. Spot
lighting facts
Light Output (Lumens) 365 Watts 8.2 Lumens per Watt (Efficacy) 44
Color Accuracy Color Rendering Index (CRI) 68
Light Color Correlated Color Temperature (CCT) 4102 (Bright White)
Warm White Bright White Davight 2700K 3000K 4500K 6500K
All results are according to IESNA LM-79-2008: Approved Method for the Electrical and Photometric Testing of Solid-State Lighting. The U.S. Department of Energy (DOE) verifies product test data and results.
Visit www.lightingfacts.com for the Label Reference Guide. Registration Number. SCXV-F8KBF2
Model Number: NS-LED-e23-NSP-12 Type: Other
lighting facts CM
Output (Lumens)
Watts 8.3 Lumens per Watt (Efficacy) 41
Color Accuracy Color Rendering Index (CRI) 67
Light Color Correlated Color Temperature (CCT) 3981 (Bright White)
s White Bright White Daylight
2700K 3000K 4500K 6500K 6500K An results are according to ISNA LM-79-2008: Approved Method for the Electrical and Photometric Testing of Solid-State Lighting. The U.S. Department of Energy (DOE) verifies product rest dist and results.
Visit www.lightingfacts.com for the Label Reference Guide.
Registration Number: GCXV-MJ8TLS Model Number: NS-LED-e23-WFL-12 Type: Other

VAC LIGHTING

24V Outdoor Color Changing LED Tape Light

Responsible Lighting®

Fixture Type:	Q12
Catalog Numbe	۲:
Project:	
Location:	

PRODUCT DESCRIPTION

Color changing 24V system for any and all outdoor accent lighting applications. Uses the latest LED technology water sealed in silicone cased tape, while still delivering crisp, quality light and effortless navigation of curves.

FEATURES

- IP-68 rated, allows for submersion up to five feet
- Power supply is UL and CUL listed
- Wet location listed
- DMX controller option (consult factory)
- Select from any color to visibly change an interior design
- Switch to warm 3500K white light with the push of a button
- Ultra thin profile at 1/8"
- Diodes spaced evenly at 1" on center
- Minimum run length of 1' and maximum of 40'
- May be field cut every 2" at the end of a run
- Unique tape section connections ensure even LED spacing and no dark spots
- Four mounting options provided for different surfaces
- 80,000 hour rated life
- 5 year WAC Lighting product warranty

SPECIFICATIONS

Construction: Flexible, silicone sealed tape light. Indicating marks on back for field cutting

Power Supply: Remote electronic Class 2 transformer.

120VAC 50/60Hz input, 24VDC 100W output.

Light Source: 12 LED diodes per foot. Runs on 24V at 1.5W per foot.

Dimming: Dimmable using an LED-TO24-WS wireless controller.

Operating Temperature: -4°F – 122°F (-20°C – 50°C), relative humidity 95%.

Standards: UL & CUL Listed. UL (E204239) wet location certified.

ORDER NUMBER Model # Length Color LED-TCO 1 1 foot RGB 5 feet 5 3500K 10 10 feet Stop at any point LED-TCO RGB for a custom color effect.

Example: LED-TCO-10-RGB

WAC Lighting www.waclighting.com Phone (800) 526.2588 • Fax (800) 526.2585 Headquarters/Eastern Distribution Center 44 Harbor Park Drive • Port Washington, NY 11050 Phone (516) 515.5000 • Fax (516) 515.5050

Western Distribution Center 1750 Archibald Avenue • Ontario, CA 91760 Phone (800) 526.2588 • Fax (800) 526.2585

WAC Lighting retains the right to modify the design of our products at any time as part of the company's continuous improvement program. APR 2014

POWER SUPPLY

LED-TO24-CS

EN-024100-RB2-T	24VDC/100W Class 2 LED transformer
CONTROLLERS	
LED-TO24-WS	4 function wireless controller
LED-TO24-CM	Master controller

Slave controller

CONTROLLER COMPONENTS

LED-TO24-IC	Joiner cables
LED-TO24-SW	Master to Slave signal wire
LED-TO24-MW	DMX to Master signal wire

TAPE LIGHT ACCESSORIES

Model #

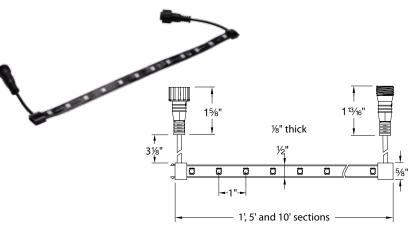
Input

Output

Power Supplies and Accessories

POWER SUPPLY

WAC LIGHTING


Responsible Lighting®

Description

Dimensions

Remote Class 2 DC Transformer	EN-024100-RB2-T	120V-277V AC	24V DC/96W	11 ⁷ /16" × 4 ¹ /8" × 1 ¹⁵ /16"	6' lead wire included. Requires a minimum load of 1W. Max run 100W: 40'
CONTROLLERS	Model #	Dimensions	Descri	ption	
Wireless Palette Controller		4"×2½"×5%"	4" × 2½" × 5%" Wireless connection to Master Controller. • Use to switch from color changing to white lig • Play/Pause the color changing effect • Control the brightness and speed of the color Includes 2 AAA batteries.		anging to white light ng effect
Master Controller	LED-TO24-CM	4"×2"×1½"		s one run up to 40'. Cor re controllers for runs o	
Slave Controller	LED-TO24-CS	4"×2"×1½"	Uses a		er for runs over 40'. supply. Powers up to another 40', ded for every 40' extension.
CONTROLLER COMPONENTS	S Model #	Dimensions	Descri	ption	
Joiner Cable	LED-T024-IC6 LED-T024-IC12 LED-T024-IC72 LED-T024-IC72	6" 12" 72" 120"	Extend Contro		ower Supply and Master
Signal wire	LED-TO24-SW60 LED-TO24-SW120	60″ 120″	Conne	Connects Master Controller and Slave Controller.	
DMX Signal Wire	LED-TO24-MW60 LED-TO24-MW120	60″ 120″	Conne	ects DMX system to Ma	ster Controller.
TAPE LIGHT ACCESSORIES	Model #	Dimensions	Descri	ption	
RGB Joiner Cable	LED-T024-IC6-RGB LED-T024-IC12-RGB LED-T024-IC12-RGB LED-T024-IC72-RGB LED-T024-IC120-RGB	6" 12" 72" 120"	Use to tape.	connect two sections	of InvisiLED® Outdoor Palette
4-Way "X" Connector	LED-TO24-X-RGB	wires: 5" each connectors: ¾			nd three female connectors tomize your design layout.
3-Way "Y" Connector	LED-TO24-Y-RGB	wires: 5" each connectors: ¾			nd two female connectors tomize your design layout.
End cap	LED-TO24-EC	5%"×5%"×3%"		Use to terminate every run to protect against contaminants. Seal cut end with silicone after adding end cap.	
Mounting Clip 1 (10 pack)	LED-TO24-C1	11/8" × 3/8" × 1/4"	For installation on non-flat surfaces where there is no edge contact. 2 clips per ft are recommended for straight runs.		
Mounting Clip 2 (10 pack)	LED-TO24-C2	7%" × 3%" × 14"			rfaces, allows for contact on commended for straight runs.
Mounting Clip 3 (10 pack)	LED-TO24-C3	5%" × 5%" × 14"			rfaces, allows for contact on recommended for straight runs.
Retrofit Channel	LED-TO24-CH1 LED-TO24-CH5	12"×5%"×1⁄4" 60"×5%"×1⁄4"		non-flexible channel fo raight, solid surface.	or mounting

24V Outdoor Color Changing LED Tape Light

WAC LIGHTING

Responsible Lighting®

Catalog Number:	
Project:	
Location:	

PRODUCT DESCRIPTION

Color changing 24V system for any and all outdoor accent lighting applications. Uses the latest LED technology water sealed in silicone cased tape, while still delivering crisp, quality light and effortless navigation of curves.

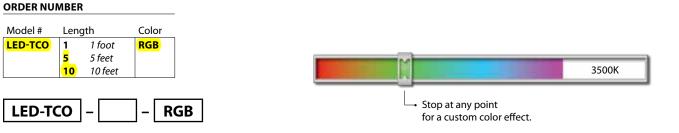
FEATURES

- IP-68 rated, allows for submersion up to five feet
- Power supply is UL and CUL listed
- Wet location listed
- DMX controller option (consult factory)
- Select from any color to visibly change an interior design
- Switch to warm 3500K white light with the push of a button
- Ultra thin profile at 1/8"
- Diodes spaced evenly at 1" on center
- Minimum run length of 1' and maximum of 40'
- May be field cut every 2" at the end of a run
- Unique tape section connections ensure even LED spacing and no dark spots
- Four mounting options provided for different surfaces
- 80,000 hour rated life
- 5 year WAC Lighting product warranty

SPECIFICATIONS

Construction: Flexible, silicone sealed tape light. Indicating marks on back for field cutting

Power Supply: Remote electronic Class 2 transformer.


120VAC 50/60Hz input, 24VDC 100W output.

Light Source: 12 LED diodes per foot. Runs on 24V at 1.5W per foot.

Dimming: Dimmable using an LED-TO24-WS wireless controller.

Operating Temperature: -4°F – 122°F (-20°C – 50°C), relative humidity 95%.

Standards: UL & CUL Listed. UL (E204239) wet location certified.

Example: LED-TCO-10-RGB

WAC Lighting www.waclighting.com Phone (800) 526.2588 • Fax (800) 526.2585

Headquarters/Eastern Distribution Center 44 Harbor Park Drive • Port Washington, NY 11050 Phone (516) 515.5000 • Fax (516) 515.5050

Western Distribution Center 1750 Archibald Avenue • Ontario, CA 91760 Phone (800) 526.2588 • Fax (800) 526.2585

WAC Lighting retains the right to modify the design of our products at any time as part of the company's continuous improvement program. APR 2014

POWER SUPPLY

LED-TO24-CS

24VDC/100W EN-024100-RB2-T Class 2 LED transformer CONTROLLERS LED-TO24-WS 4 function wireless controller LED-TO24-CM Master controller

Slave controller

CONTROLLER COMPONENTS

LED-TO24-IC	Joiner cables
LED-TO24-SW	Master to Slave signal wire
LED-TO24-MW	DMX to Master signal wire

TAPE LIGHT ACCESSORIES

LED-TO24-IC-RGB	RGB Joiner Cable
LED-TO24-X-RGB	4 way "X" connector
LED-TO24-Y-RGB	3 way "Y" connector
LED-TO24-EC	End cap
LED-TO24-C1	Mounting clip 1 (10 per pack)
LED-TO24-C2	Mounting clip 2 (10 per pack)
LED-TO24-C3	Mounting clip 3 (10 per pack)
LED-TO24-CH	Retrofit channel

Model #

Input

Output

Power Supplies and Accessories

POWER SUPPLY

WAC LIGHTING

Responsible Lighting®

Description

Dimensions

Remote Class 2 DC Transformer	EN-024100-RB2-T	120V-277V AC	24V DC/96W	11 ⁷ /16" × 4 ¹ /8" × 1 ¹⁵ /16"	6' lead wire included. Requires a minimum load of 1W. Max run 100W: 40'
CONTROLLERS	Model #	Dimensions	Descri	ption	
Wireless Palette Controller		4"×2½"×5%"	4" × 2½" × 5%" Wireless connection to Master Controller. • Use to switch from color changing to white lig • Play/Pause the color changing effect • Control the brightness and speed of the color Includes 2 AAA batteries.		anging to white light ng effect
Master Controller	LED-TO24-CM	4"×2"×1½"		s one run up to 40'. Cor re controllers for runs o	
Slave Controller	LED-TO24-CS	4"×2"×1½"	Uses a		er for runs over 40'. supply. Powers up to another 40', ded for every 40' extension.
CONTROLLER COMPONENTS	S Model #	Dimensions	Descri	ption	
Joiner Cable	LED-T024-IC6 LED-T024-IC12 LED-T024-IC72 LED-T024-IC72	6" 12" 72" 120"	Extend Contro		ower Supply and Master
Signal wire	LED-TO24-SW60 LED-TO24-SW120	60″ 120″	Conne	Connects Master Controller and Slave Controller.	
DMX Signal Wire	LED-TO24-MW60 LED-TO24-MW120	60″ 120″	Conne	ects DMX system to Ma	ster Controller.
TAPE LIGHT ACCESSORIES	Model #	Dimensions	Descri	ption	
RGB Joiner Cable	LED-T024-IC6-RGB LED-T024-IC12-RGB LED-T024-IC12-RGB LED-T024-IC72-RGB LED-T024-IC120-RGB	6" 12" 72" 120"	Use to tape.	connect two sections	of InvisiLED® Outdoor Palette
4-Way "X" Connector	LED-TO24-X-RGB	wires: 5" each connectors: ¾			nd three female connectors tomize your design layout.
3-Way "Y" Connector	LED-TO24-Y-RGB	wires: 5" each connectors: ¾			nd two female connectors tomize your design layout.
End cap	LED-TO24-EC	5%"×5%"×3%"		Use to terminate every run to protect against contaminants. Seal cut end with silicone after adding end cap.	
Mounting Clip 1 (10 pack)	LED-TO24-C1	11/8" × 3/8" × 1/4"	For installation on non-flat surfaces where there is no edge contact. 2 clips per ft are recommended for straight runs.		
Mounting Clip 2 (10 pack)	LED-TO24-C2	7%" × 3%" × 14"			rfaces, allows for contact on commended for straight runs.
Mounting Clip 3 (10 pack)	LED-TO24-C3	5%" × 5%" × 14"			rfaces, allows for contact on recommended for straight runs.
Retrofit Channel	LED-TO24-CH1 LED-TO24-CH5	12"×5%"×1⁄4" 60"×5%"×1⁄4"		non-flexible channel fo raight, solid surface.	or mounting

FEATURES & SPECIFICATIONS

INTENDED USE — Provides a minimum of 90 minutes of illumination for the rated wattage upon loss of AC power. Ideal for applications requiring attractive unit equipment with quick installation. Certain airborne contaminants can diminish integrity of acrylic. <u>Click here for Acrylic Environmental Compatibility</u> table, for suitable uses.

CONSTRUCTION — White, compact, low-profile contemporary design. Engineering-grade thermoplastic housing is impact-resistant, scratch-resistant and corrosion-proof. UL94V-O flame rating. UV-stable resin resists discoloration from natural and man-made light sources.

Two LED lamp heads with 12 series-parallel white LEDs each, provide redundant light sources to ensure emergency lighting performance. Typical LED lamp life is 10 years.

Dual-voltage input capability (120/277V). Edge connector on printed circuit board ensures long-term durability. Low-profile, integrated test switch/pilot light. Easily visible bright red status indicator.

Unique track-and-swivel arrangement permits full range of direction of lamp head adjustment. Universal J-box mounting pattern. Tool-less access for maintenance. Flexible conduit entry provision on top of the unit.

Ceiling- or wall-mount standard.

ELECTRICAL — Current-limiting charger maximizes battery life and minimizes energy consumption. Provides low operating costs.

Short-circuit protection — current-limiting charger circuitry protects printed circuit board from shorts.

Thermal compensation adjusts charger output to provide optimum charge voltage relative to ambient temperature.

Regulated charge voltage maintains constant-charge voltage over a wide range of line voltages. Prevents over/ undercharging that shortens battery life and reduces capacity.

Filtered charger input minimizes charge voltage ripple and extends battery life.

AC/LVD reset allows battery connection before AC power is applied and prevents battery damage from deep discharge.

BATTERY: Sealed, maintenance-free nickel-cadmium battery delivers 90 minute capacity to emergency lamps. Two-state constant-current charge maximizes battery life and automatically recharges after battery discharge. Low-voltage disconnect prevents excessively deep discharge that can permanently damage the battery. Optional high-output battery available to power both local and optional LED remote lamp heads simultaneously.

Wireless Reporting System (WRS option): Data from self-diagnostics will be communicated via wireless transceivers within their vicinity, creating a self-configuring, self-healing and self-optimizing wireless network that exchanges the data between FIDO-compatible emergency lighting fixtures on an event-driven basis. Wireless communications electronics to operate 2.4GHz mesh network are enclosed entirely within the fixture.

Self -Diagnostics (SD- Option) Single multi-color LED indicator to display two-state charging, test activation and three-state diagnostic test. Test switch provides manual activation of 30-second diagnostic testing for on-demand visual inspection. Self-diagnostic testing for 30 seconds every 30 days, 30 minutes at 180-day interval, and 90 minutes annually. Diagnostic evaluation of LED light source, AC to DC transfer, charging and battery condition.

Wireless Reporting System (WRS option) must be ordered with FIDO edge router.

Catalog Number

Notes

Туре

Thermoplastic Emergency Light

INSTALLATION — Radio range is 500' between fixtures in most buildings. Actual performance may vary depending on application environment and electromagnetic interference. Substantially longer distances have been recorded in uninterrupted open air. Consult factory for more details.

LISTING — UL damp location listed standard 50-104°F (10-40°C). Meets UL 924, NFPA 101 (current Life Safety Code), NEC and OSHA illumination standards.

WARRANTY — Five-year limited warranty. Full warranty terms located at

www.AcuityBrands.com/CustomerResources/Terms_and_Conditions.aspx.

Specifications subject to change without notice.

Actual performance may differ as a result of end-user environment and application.

ORDERINGINFORMATION Lead times will vary depending on options selected. Consult with your sales representative.					
ELM2 LED					
Series	Lamp type	Housing	Options		
ELM2	(LED) (Two 1.5W/3.6V white LED)	<mark>(blank) (White</mark> B Black	HO High-output ni-cad battery for 6W remote capacity 1 (SD) Self-diagnostics 1 NOM Meets Mexican standards WRS Dual-voltage 120/277, nickel-cadmium battery back-up and self-diagnor reporting system capability 1	ostics with FIDO wireless	

Accessories: Order as	separate catalog number.		
ELA Q L0304 SD	Single LED indoor remote head, white, self-diagnostics 2,3,4	ELA Q L0304	Single LED indoor remote head, white $^{\rm 2,3,4}$
ELA T Q L0304 SD	Twin LED indoor remote head, white, self-diagnostics $^{\rm 2,3,4}$	ELA T Q L0304	Twin LED indoor remote head, white $^{\rm 2,3,4}$
ELA QWP L0304 SD	Single LED weather-proof remote head, gray, self-diagnostics 2,3,4	ELA QWP L0304	Single LED weather-proof remote head, gray $^{\rm 2,4}$
ELA T QWP L0304 SD	Twin LED weather-proof remote head, gray, self-diagnostics	ELA T QWP L0304	Twin LED weather-proof remote head, gray $^{\rm 2,4}$
ELA WG1 FIDO	Wireguard, 15"W x 13-1/2"H x 6"D (See spec sheet <u>ELA-WG</u>) Emergency wireless reporting system edge router (See spec sheet <u>FIDO</u>)		

es

- Not available with NOM.
- Only available with HO option. See spec sheet ELA Q LED.
- Also available in black. Add "B" after FLA to order black finish Example: ELA B Q L0304 SD. See spec sheet ELA Q LED.
- Only compatible with Quantum I FD series

SPECIFICATIONS

Electrical Primary Circuit							
Typical LED life ¹	Supply voltage	Max amps	Max watts	HO/max watts			
10 years	120	.04	1.44	2.88			
	277	.03	1.44	2.88			

BATTERY

Ni-Cad				
Voltage	Shelf life ²	Typical life²	Maintenance ³	Optimum temperature⁴
3.6	3 years	7-9 years	none	50-104°F (10-40°C)

1 Based on continuous operation.

2 At 77°F (25°C).

All life safety equipment, including emergency lighting path of egress, must be maintained, serviced and tested 3 in accordance with all National Fire Protection Association and local codes. Failure to perform the required maintenance, service or testing could jeopardize the safety of occupants and will void all warranties.

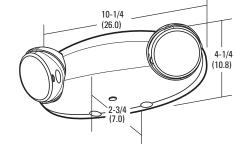
Optimum ambient temperature range where unit will provide capacity for 90 minutes. Higher and lower 4 temperatures affect life and capacity. Consult factory for detailed information.

Remote Output Ca	pacity
Standard unit	Unit/HO battery
NA	6W

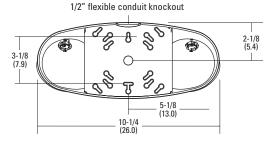
LAMP PHOTOMETRICS

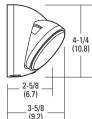
QUANTUM LED SERIES - SINGLE COVERAGE

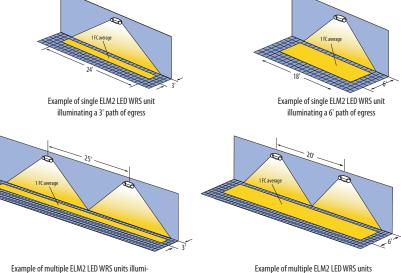
3W Total White LEDs


Using a single unit at a typical 7.5' mounting height delivers an average illuminance of 1.0 FC over a distance of 24' on a 3' path of egress and 18' on a 6' path of egress.

QUANTUM LED SERIES - MULTIPLE COVERAGE 3W Total White LEDs Using multiple units at a typical 7.5' mounting height delivers 25' center-to-center spacing on a 3' path of egress and 20' center-to-center spacing on a 6' path of egress.


MOUNTING


All dimensions are inches (centimeters).


Shipping weight: 4.0 lbs. (1.8 kgs.)

Mounting Plate

nating a 3' path of egress

Example of multiple ELM2 LED WRS units illuminating a 6' path of egress

ELM2-LED

EXTENDED RUN-TIME FOR HIGH-OUTPUT UNITS

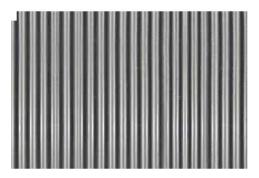
Product ELM2 LED HO WRS (no remotes)

Run time 3.9 hours * Meets Life Safety Code standard minimum illuminance of 0.1 FC and average illuminance of 1.0 FC. Assumes open space with no obstructions, mounting height: 7.5', ceiling height: 9', and reflectances: 80/50/20. Analysis based on independently tested photometrics.

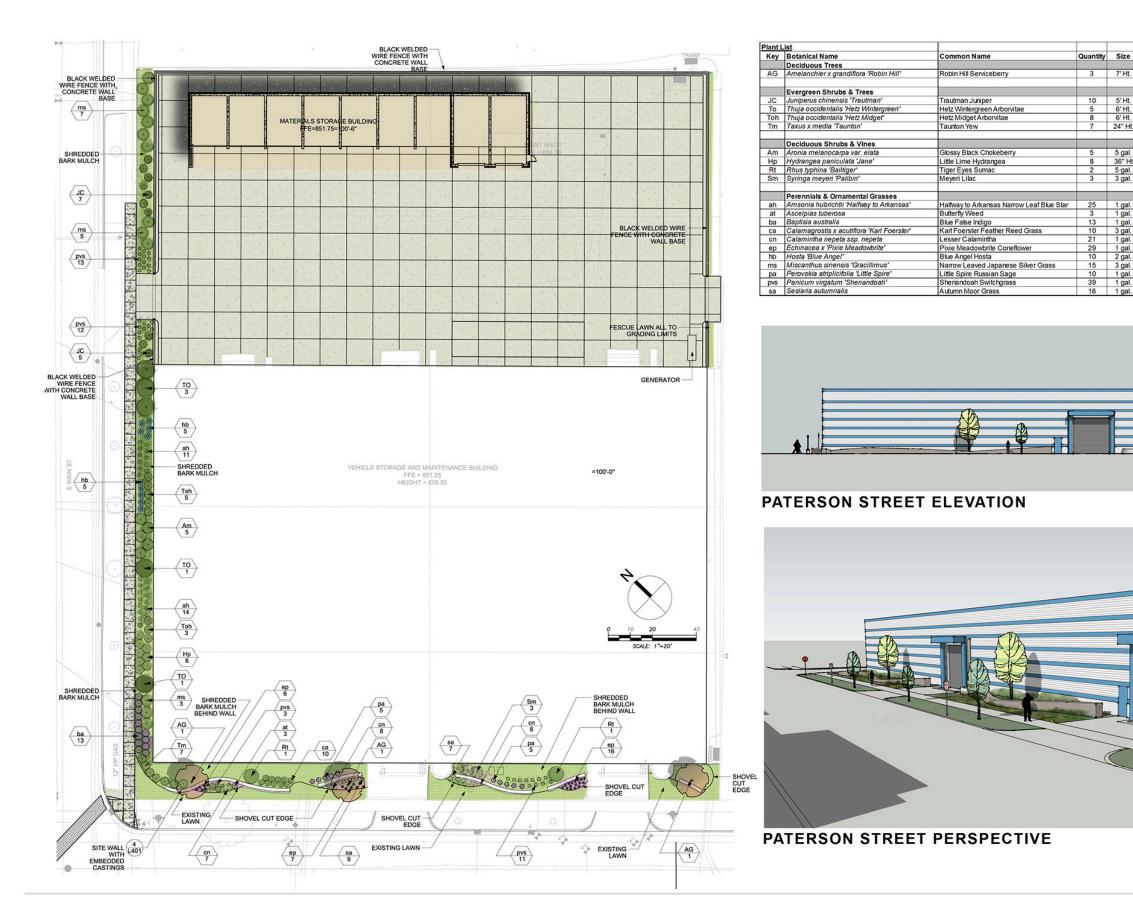
MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission CONTEXTUAL SITE IMPRESSIONS 13 July 2016

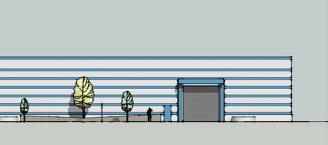
MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission RENDERING 13 July 2016

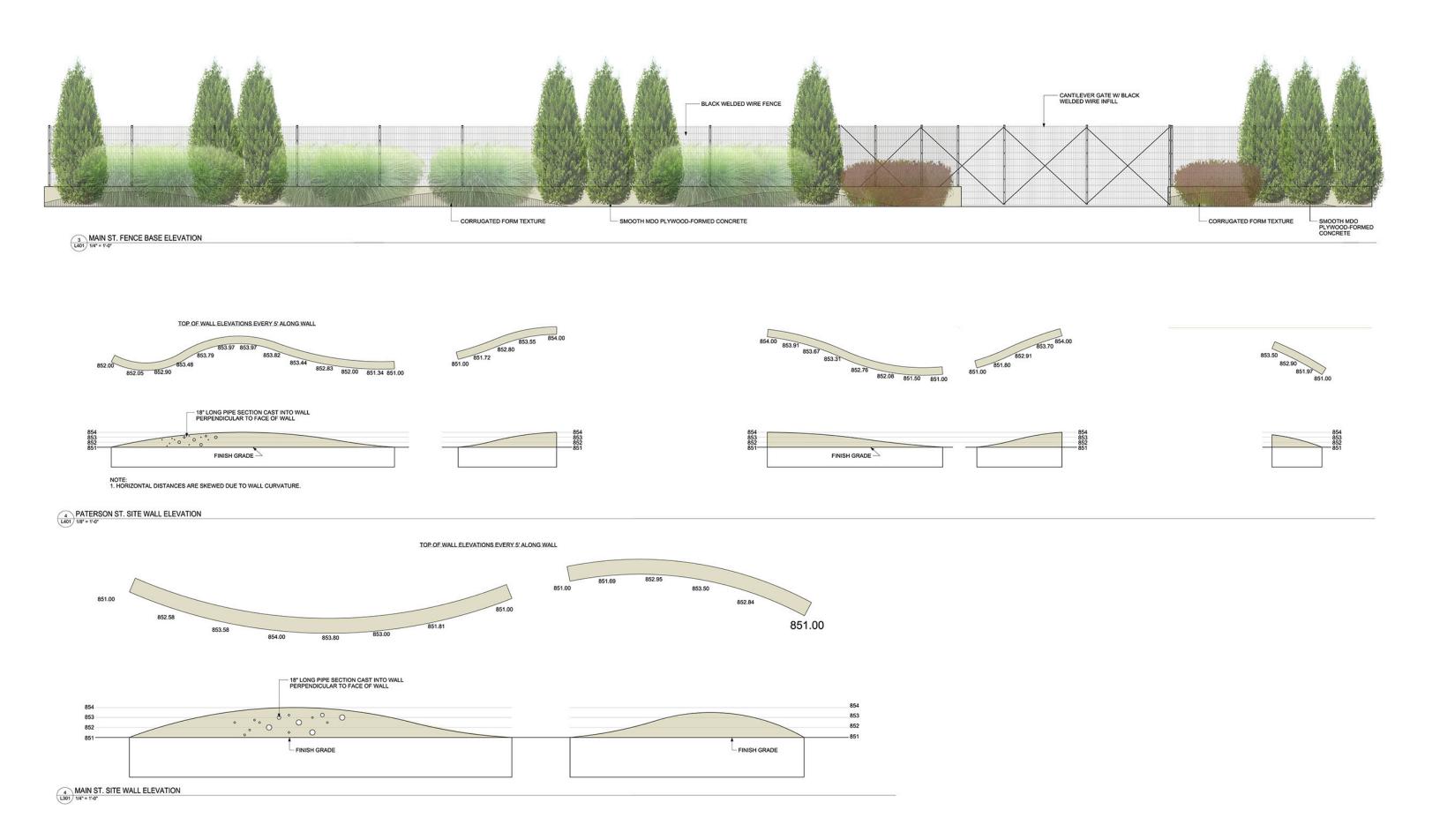



MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission INSPIRATION IMAGES AND MATERIALS 13 July 2016

	_
	the second second second second second second second second second second second second second second second se
	No. of Concession, Name of
	and the second data was a second data was a second data was a second data was a second data was a second data w
the second second second second second second second second second second second second second second second se	
	Management of the local division of the loca







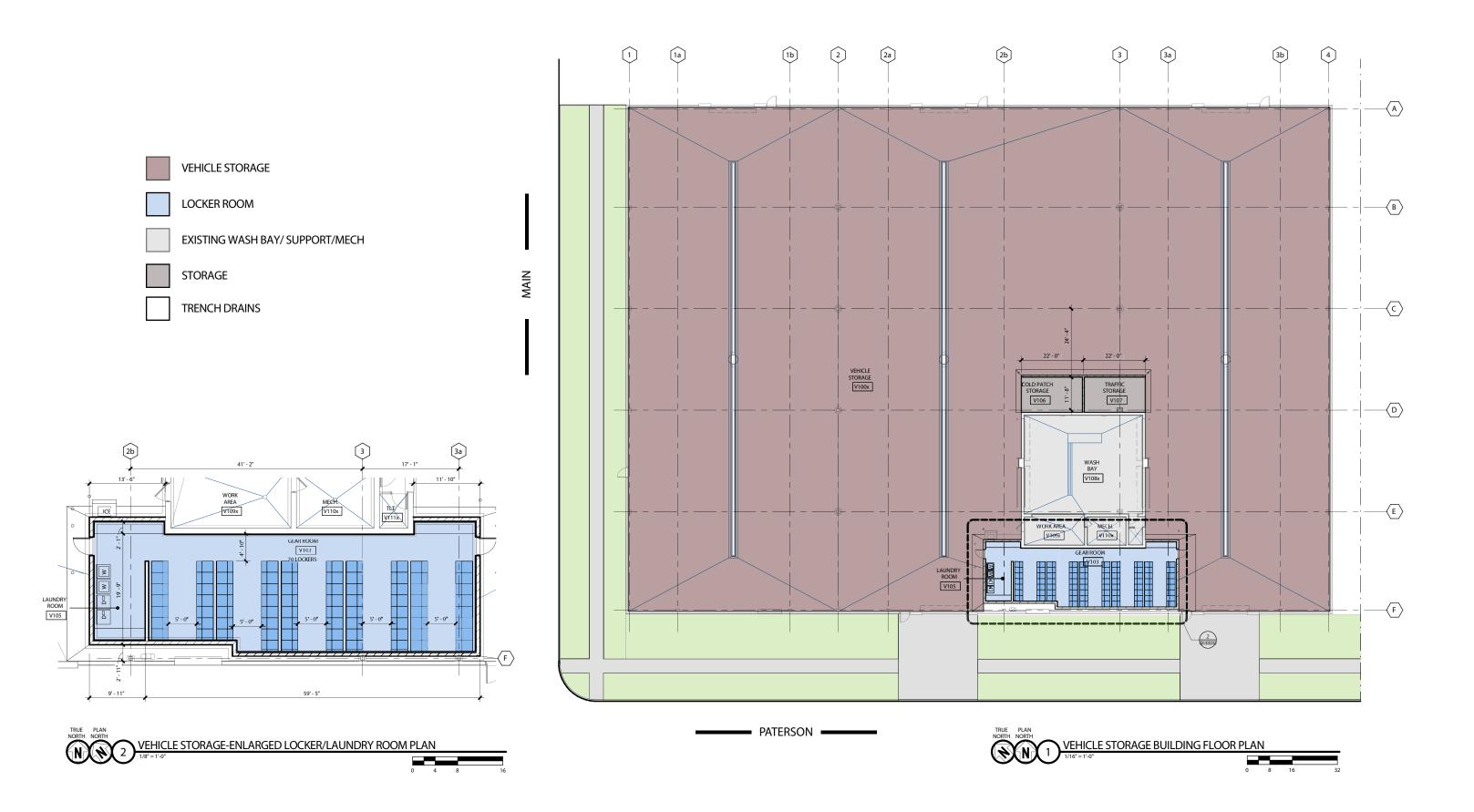
e	Spec	Comments	Mature Size
łt.	B&B	See plan for spacing	20-25' ht x 10'-15' sp
łt.	B&B	See plan for spacing	12' ht x 4' sp
łt.		See plan for spacing	20-30' ht x 5-10' sp
łt.		See plan for spacing	3-4' ht x 4-5' sp
Ht.	B&B	Single, straight leader; match specimens	2-3' ht x 4-5' sp
-	_		
al.	Cont	Space 4'-0" o.c.	4-6' ht x 4-6' sp
Ht	B&B	Space 4'-0" o.c.	4-5'ht x 4-5' sp
		See plan for spacing	3-6' ht x 3-6' sp
al.	Cont	Space 5'-0" o.c.	4-5' ht x 5-7' sp
_	_		
al.	Cont.	Space 3'-0" o.c.	3' ht x 2.5-3' sp
		Space 24" o.c.	1-2.5' ht x 1.5' sp
al,	Cont	Space 3'-0" o.c.	3' ht x 2.5-3' sp
		Space 24" o.c.	4-6' ht x 2-3' sp
al.	Cont	Space 24" o.c.	1.5-2' ht x 1.5-2' sp
al.	Cont	Space 18" o.c.	1.5-2' ht x 1.5-2' sp
al.	Cont	Space 3'-6" o.c.	2.5'ht x 4' sp
al.	Cont	Space 5'-0" o.c.	4-6' ht x 4-6' sp
al.	Cont	Space 32" o.c.	1.5-2' ht x 1.5-2' sp
al.	Cont	Space 4'-0" o.c.	3.5' ht x 2.5-3' sp
al.	Cont	Space 1'-6" o.c.	1.5' ht x 1.5' sp

PATERSON STREET LOOKING SOUTHEAST

CORRUGATED CONCRETE FORMS

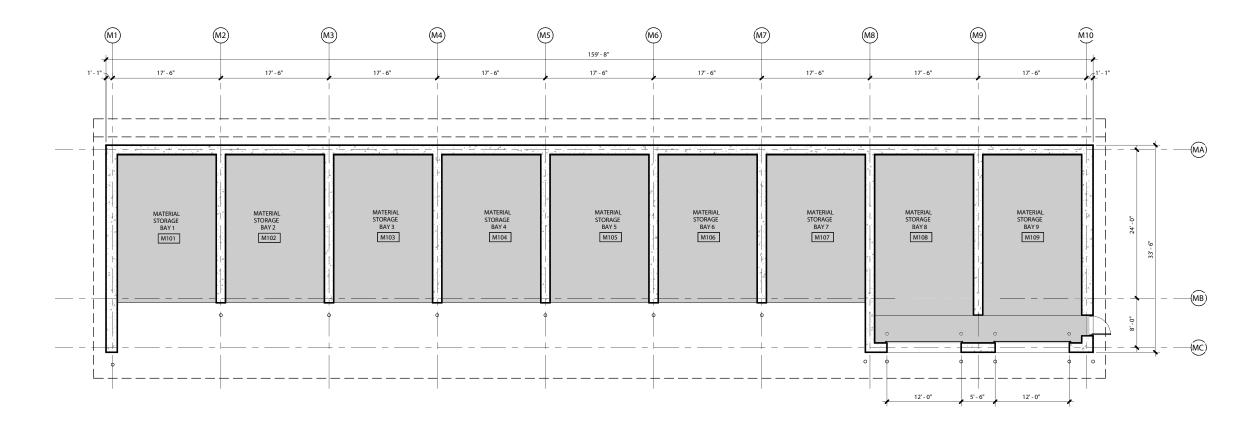
UNDULATING CONCRETE WALL

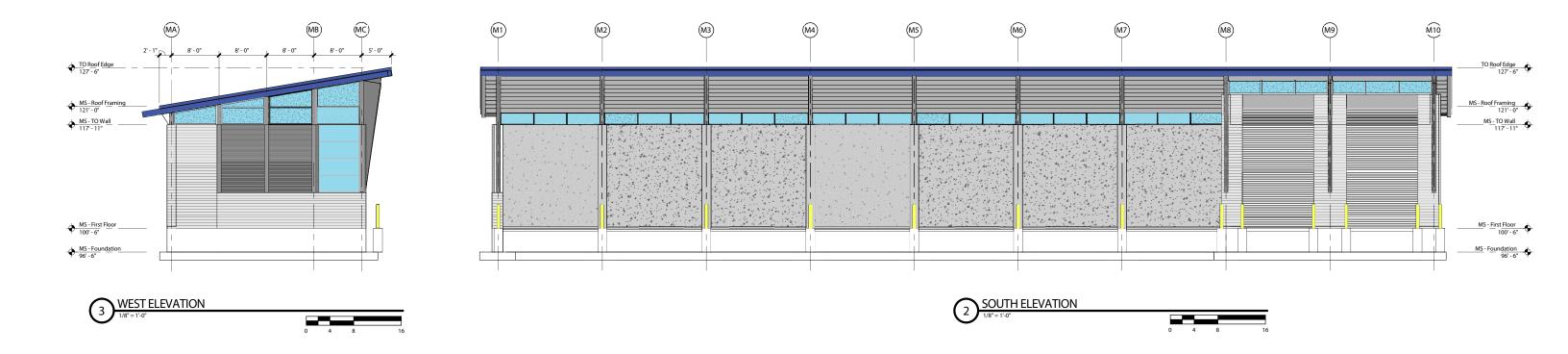
CONCRETE WALL HOLE FORM VOIDS



MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission RENDERING, SITE MATERIAL IMAGES 13 July 2016

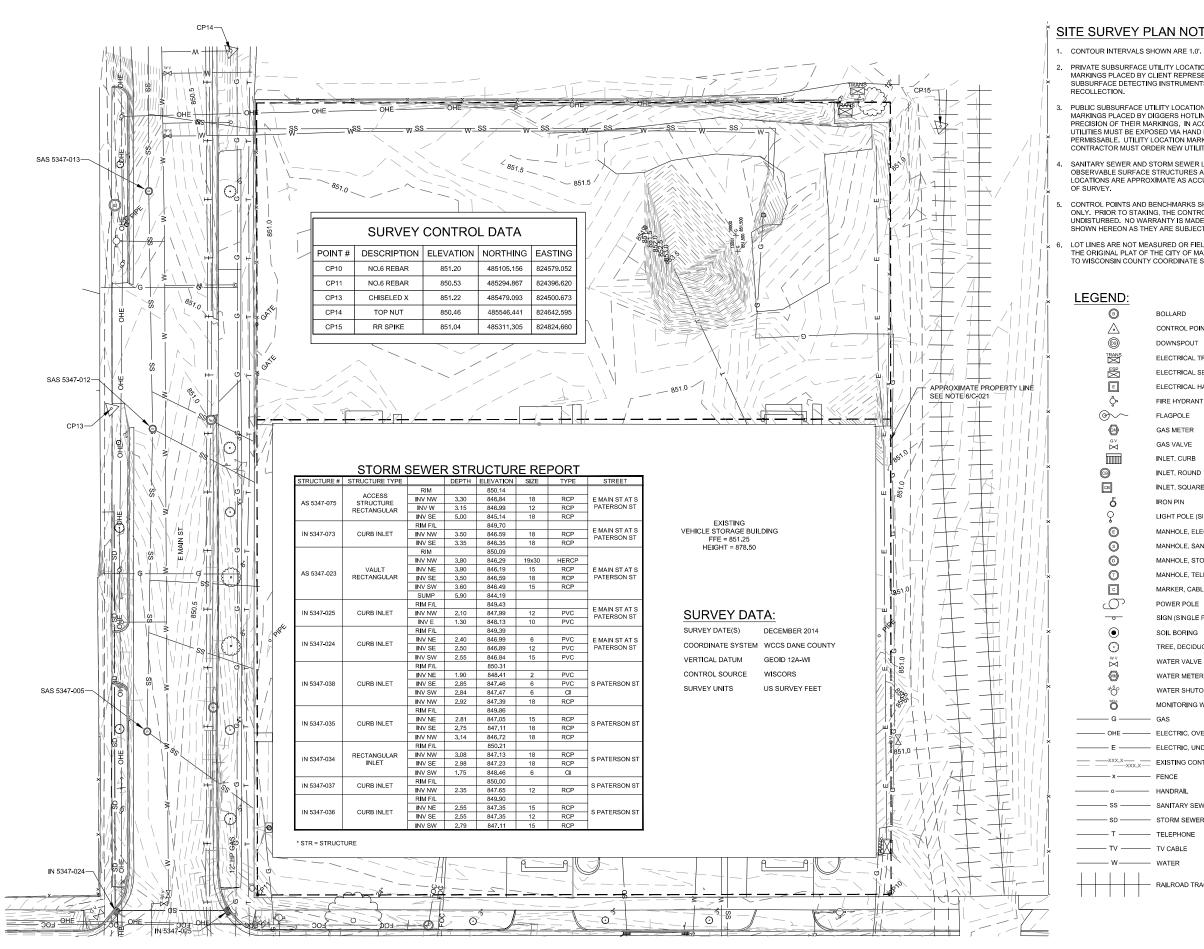
interiii.com




MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission VEHICLE STORAGE BUILDING FLOOR PLAN 13 July 2016

MSVS-02





MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission MATERIAL STORAGE BUILDING FLOOR PLAN & ELEVATIONS

MSVS-03

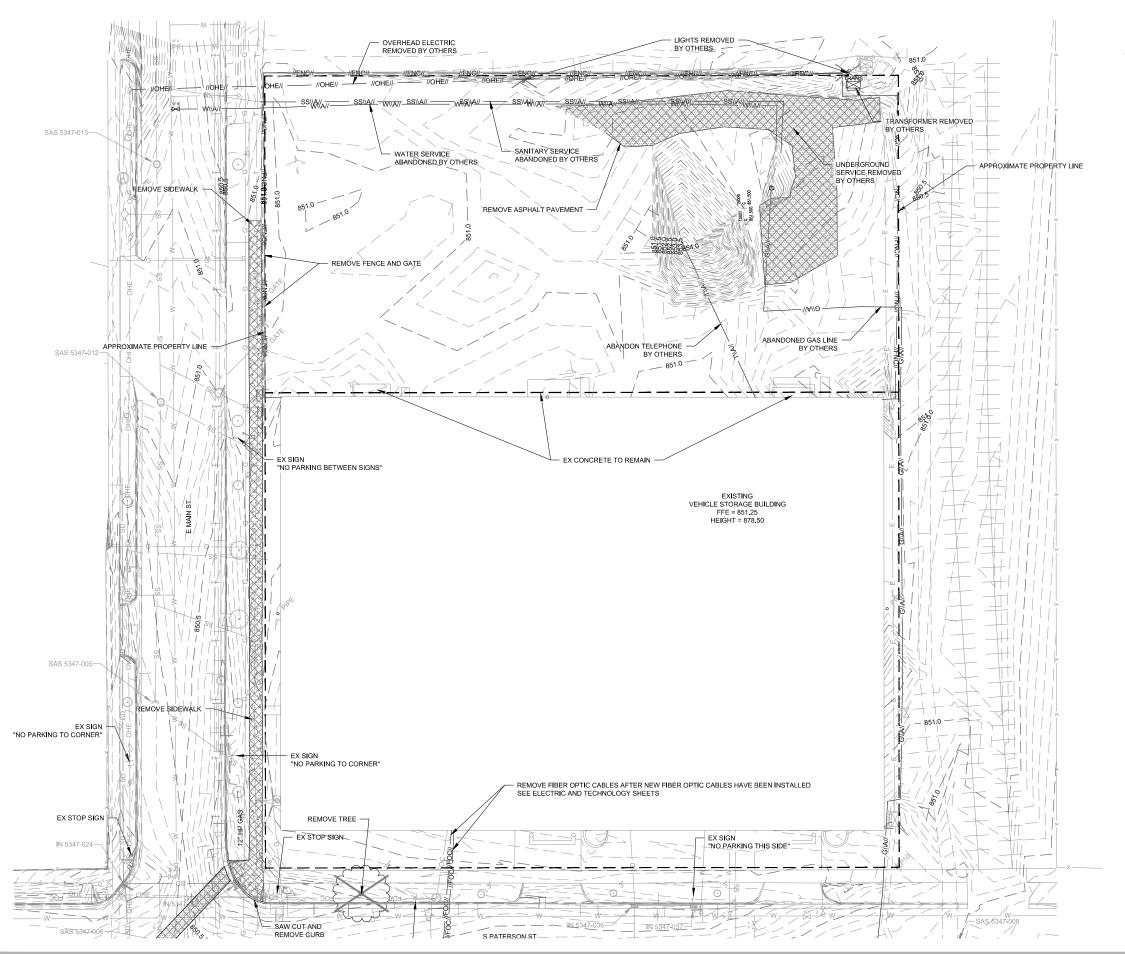
MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission SITE REMOVALS PLAN 13 July 2016

SITE SURVEY PLAN NOTES:

PRIVATE SUBSURFACE UTILITY LOCATIONS SHOWN HEREON ARE BASED UPON GROUND MARKINGS PLACED BY CLIENT REPRESENTATIVE. MARKINGS MAY NOT BE BY BENEFIT OF SUBSURFACE DETECTING INSTRUMENTS AS SOME WERE MARKED PER PERSONNEL BEST

3. PUBLIC SUBSURFACE UTILITY LOCATIONS SHOWN HEREON ARE BASED UPON GROUND MARKINGS PLACED BY DIGGERS HOTLINE. DIGGERS HOTLINE DOES NOT GUARANTEE THE PRECISION OF THEIR MARKINGS. IN ACCORDANCE WITH WISCONSIN LAW, SUBSURFACE UTILITIES MUST BE EXPOSED VIA HAND DIGGING BEFORE MACHINE DIGGING IS PERMISSABLE. UTILITY LOCATION MARKINGS ARE VALID FOR ONLY 10 DAYS. CONTRACTOR MUST ORDER NEW UTILITY LOCATE PRIOR TO ANY EXCAVATION.

4. SANITARY SEWER AND STORM SEWER LOCATIONS HAVE BEEN DETERMINED BY OBSERVABLE SURFACE STRUCTURES AND RESPECTIVE FEATURES. INTERMEDIATE PIPE LOCATIONS ARE APPROXIMATE AS ACCURATE LOCATIONS WERE NOT AVAILABLE AT TIME


CONTROL POINTS AND BENCHMARKS SHOWN HEREON ARE FOR REFERENCE PURPOSES ONLY. PRIOR TO STAKING, THE CONTROL MUST BE INDEPENDENTLY VERIFIED AS UNDISTURBED. NO WARRANTY IS MADE WITH RESPECT TO THE ACCURACY OF CONTROL SHOWN HEREON AS THEY ARE SUBJECT TO POTENTIAL DISTURBANCE.

LOT LINES ARE NOT MEASURED OR FIELD VERIFIED AND ARE SHOWN AS RECORDED ON THE ORIGINAL PLAT OF THE CITY OF MADISON. ALL TOPOGRAPHIC DATA IS REFERENCED TO WISCONSIN COUNTY COORDINATE SYSTEM.

	BOLLARD
	CONTROL POINT
	DOWNSPOUT
	ELECTRICAL TRANSFORMER BOX
	ELECTRICAL SERVICE PANEL
	ELECTRICAL HANDHOLE/PULLBOX
	FIRE HYDRANT
	FLAGPOLE
	GAS METER
	GAS VALVE
	INLET, CURB
	INLET, ROUND
	INLET, SQUARE
	IRON PIN
	LIGHT POLE (SINGLE)
	MANHOLE, ELECTRIC
	MANHOLE, SANITARY SEWER
	MANHOLE, STORM SEWER
	MANHOLE, TELECOMMUNICATIONS
	MARKER, CABLE
	POWER POLE
	SIGN (SINGLE POST)
	SOIL BORING
	TREE, DECIDUOUS
	WATER VALVE
	WATER METER
	WATER SHUTOFF
	MONITORING WELL
	GAS
	ELECTRIC, OVERHEAD
	ELECTRIC, UNDERGROUND
.×—	EXISTING CONTOUR LINES
	FENCE
	HANDRAIL
	SANITARY SEWER
	STORM SEWER / ROOF DRAIN
	TELEPHONE
	TV CABLE
	WATER
\vdash	RAILROAD TRACKS
1	

MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission SITE REMOVALS PLAN 13 July 2016

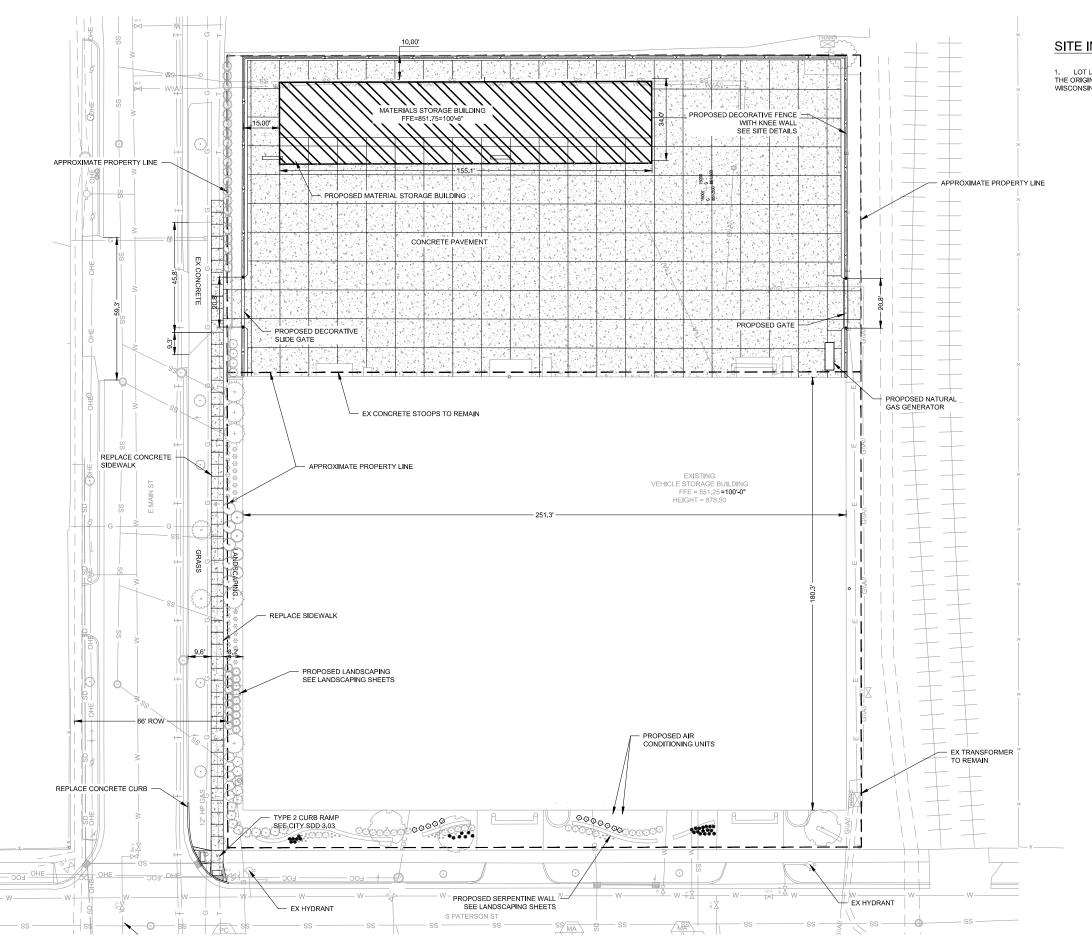
SITE DEMOLITION PLAN NOTES:

1. LOT LINES ARE NOT MEASURED OR FIELD VERIFIED AND ARE SHOWN AS RECORDED ON THE ORIGINAL PLAT OF THE CITY OF MADISON. ALL TOPOGRAPHIC DATA IS REFERENCED TO WISCONSIN COUNTY COORDINATE SYSTEM.

LEGEND:

\\A//	ABANDON
CON\\A//	ABANDON CONDUIT
E\\A//	ABANDON ELECTRIC
G\\A//	ABANDON GAS, UND
SS\\A//	ABANDON SANITARY
SD\\A//	ABANDON STORM SE
T\\A//	ABANDON TELEPHON
W\\A//	ABANDON WATER
\times	REMOVE
· /· /· /· /· /· /· /· /· /· /· /· /· /·	REMOVE
//CON//	REMOVE CONDUIT
//E//	REMOVE ELECTRIC,
//OHE//	REMOVE ELECTRIC,
//FNC//	REMOVE FENCE
//FOC//	REMOVE FIBER OPTI
//G//	REMOVE GAS LINE
//SS//	REMOVE SANITARY S
//SD//	REMOVE STORM SEV
//T//	REMOVE TELEPHONE
//W//	REMOVE WATER LIN

 \times


 \boxtimes

ABANDON ELECTRIC, UNDERGROUND ABANDON GAS, UNDERGROUND ABANDON SANITARY SEWER ABANDON STORM SEWER ABANDON TELEPHONE ABANDON WATER REMOVE REMOVE REMOVE CONDUIT REMOVE ELECTRIC, UNDERGROUND REMOVE ELECTRIC, OVERHEAD REMOVE FENCE REMOVE FIBER OPTIC CABLE REMOVE GAS LINE REMOVE SANITARY SEWER REMOVE STORM SEWER REMOVE TELEPHONE REMOVE WATER LINE ASPHALT REMOVAL ASPHALT OVERLAY REMOVAL CONCRETE REMOVAL

REMOVAL PATTERN

MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission SITE IMPROVEMENTS PLAN 13 July 2016

SITE IMPROVEMENTS PLAN NOTES:

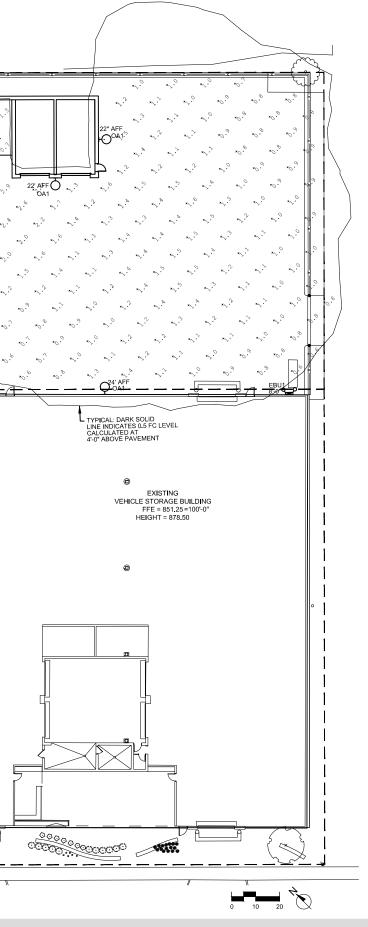
1. LOT LINES ARE NOT MEASURED OR FIELD VERIFIED AND ARE SHOWN AS RECORDED ON THE ORIGINAL PLAT OF THE CITY OF MADISON. ALL TOPOGRAPHIC DATA IS REFERENCED TO WISCONSIN COUNTY COORDINATE SYSTEM.

LEGEND: . 6 CB 0 _____ ----- GAS GUARDRAIL ------- SS ------- SANITARY SEWER _____ · SSSSSSSSSSSSSSS SEDIMENT LOG — SD — – т — — TV — - w -

SIGN (SINGLE POST) STORM INLET, CURB STORM INLET. ROUND STORM INLET, SQUARE STORM SEWER MANHOLE TRAFFIC FLOW DIRECTION BOUNDARY (PROJECT / CONSTRUCTION LIMITS) - CON ----- CONDUIT, GENERIC OHE ------ ELECTRIC, OVERHEAD ----- ELECTRIC, UNDERGROUND EXISTING CONTOUR LINES xx)_____ PROPOSED CONTOUR LINES FENCE ------ GRADING LIMITS HANDRALL - - - PROPERTY LINE - S - SIGNAL CABLE, UNDERGROUND - SILT FENCE STONE RETAINING WALL ----- STORM SEWER / CULVERT TELEPHONE, UNDERGROUND — TV CABLE WATER ASPHALT CONCRETE STABILIZED CONSTRUCTION ENTRANCE EROSION MAT

				LUMINAIRE	SCHED	DULE								
			FORMATION REGARDING LUMINAIRE AND INSTALLATION REQUIREMENTS. PR ID. ACCEPTABLE MANUFACTURERS MUST MEET THE PHOTOMETRIC PERFOR	OVIDE OPTIONS	AND ACCE	SSORIES RE	FERENCE	D BY THE CO	LUMN TITLED) " OPTIONS//	CCESSORIE	S". MANUFACTU	RERS LISTED ACCEPTABLE SHALL M	MEET ALL
	ABBREVIATIONS:	DW = DRY WALL ES = EXPOSED STRUC LG = LAY-IN GRID	P = PENDANT S = SURFACE CTURE PL = PLASTER W = WALL MOUNTED R = RECESSED V = VARIES											
DES.	MANUFACTURER	CATALOG SERIES	DESCRIPTION	LAMP DATA	VOLT	BALLAST/D RIVER	MOUNT	CEILING TYPE	FIXTURE DEPTH	FIXTURE INPUT WATTAGE	INITIAL OR DELIVERED LUMENS	OPTIONS / ACCESSORIES	ACCEPTABLE MANUFACTURERS	SEE NOTE
М1	LITHONIA	D-SERIES LED CANOPY	LED SUFACE MOUNTED CANOPY FIXTURE WITH DIE CAST ALUMINUM HOUSING, CLEAR ACRYLIC LENS, INTEGRAL MOTION SENSOR AND IP66 LISTED.	4100K LED	120V	D	s	ES	3 1/2*	50W	4500			-
OA1	LITHONIA	D-SERIES SIZE 1	LED POLE MOUNTED AREA FIXTURE WITH DIE CAST ALUMINUM HOUSING, ACRYLIC LENS, DARK SKY FRIENDLY CERTIFIED, IPO5 RATED, TYPE II LIGHT DISTRIBUTION, AND NATURAL ALUMINUM FINISH, 30' SQUARE STRAIGHT STEEL POLE.	4000K LED	120V	D	-	-	-	70W	6700		CREE EDGE SERIES PHILIPS PUREFORM SERIES	-
OF1	B-K LIGHTING	NITE STAR SERIES	ABOVE GRADE LED LANDSCAPE FLOOD LIGHT WITH ALUMINUM HOUSING, INTEGRAL DRIVER, MEDIUM FLOOD DISTRIBUTION, SOFT FOCUS LENS AND ROTATIONAL KNUCKLE MOUNTING. FINISH TO BE SELETECED BY ARCHITECT.	4000K LED	120V/24V	D	-	-	-	10W	350		LUMIERE CAMBRIA 203 SERIES	-
Q12	WAC	INVISILED OUTDOOR SERIES	25 COLOR CHANGING LED OUTDOOR TAPE LIGHT, COLOR SET TO BLUE. IPAB RATED WE'L LOCATION LISTED, JOW REMOTE TRANSFORMER, 10 VERTICAL SECTION AND 15 HORIZONTA, SECTION REQUIRED. REFER TO GUEVATION. CONTRACTOR TO SUPPLY WITH ALL REQUIRED ACCESSORIES TO MAKE A COMPLETE INSTALLATION.	RGB LED	120V/24V	в	s	-	1/8"	1.5W/LF	-			-
EBU1	LITHONIA	ELM2 SERIES	EMERGENCY BATTERY UNIT WITH TWO 1.5W/3.6V LED LAMPS WITH SELF DIAGNOTICS	W/ UNIT	120/277V	-	w	-	-	5W	-		DUAL-LITE LZ SERIES PHILIPS VU6L SERIES	-

							ŧĆ
							¢
							r
	CA	LCULATION	SUMMARY	(18≿.	
CALCULATION AREA	AVG F.C.	AVG F.C. MAX F.C. M		AVG/MIN RATIO	MAX/MIN RATIO	0	8
MATERIAL STORAGE	1.4	2.5	0.6	2.3:1	4:1		
PARKING	1.3	3.5	0.5	2.5:1	7:1		₽
LANDSCAPE WALL	0.2	7.0	0.0	-	-		4
				•	·		Ż
		LIGHTIN	IG POWER	DENSITY (LDP) SUM	IMARY	IV K	Ð
	CALCU	ALTION ARE	A	AREA SF TOTAL	WATTS LDP		Ð


32,182 779

LDP AREA

MADISON WATER UTILITY Vehicle Storage Renovation and Material Storage Building - Urban Design Commission SITE LIGHTING 13 July 2016

HAVE PHOTOMETRIC DATA TO CALCUATE LIGHT LEVEL AGE E N.N. FFE #851 75=1002-6" N. ~~~ ______ ů Ú 5 (¹/₁) Ň \odot CXXX *~?` ×v. J *2.* 1 + 0 0 AREA SF TOTAL WATTS LDP 0.02 . œ \odot \odot GAS 12" HP Z

MADISON WATER UTILITY **Vehicle Storage Renovation and Material Storage Building - Urban Design Commission** Context Rendering Paterson & Main Street MWU Operations Center ^{13 July 2016}

