

				The same of the sa		
Project					Job Ref.	
Arboretum F	Pond #3 Sto	cture				
Section					Sheet no./rev.	
Walls					1	1
Calc. by	Date	i	Chk'd by	Date	App'd by	Date
JJE	11/12/2	2014	and wanter			

RETAINING WALL ANALYSIS

In accordance with IBC 2009

REINFORCEDAENT SHOWN AS DESIGNED

Program is for Retaining Wall and does not have allowance for approved walls. Key added to

resolve Stiding.

Tedds calculation version 2.4.06

Retaining wall details

Stem type

Stem height

Stem thickness

Angle to rear face of stem

Stem density

Toe length

Base thickness

Key position

Key depth

Key thickness

Base density

Dase defisity

Height of retained soil

Angle of soil surface

Depth of cover

Retained soil properties

Soil type

Moist density

Saturated density

Effective angle of internal resistance

Effective wall friction angle

Base soil properties

Soil type

Moist density

Cohesion

Effective angle of internal resistance

Effective wall friction angle

Effective base friction angle

Allowable bearing pressure

Loading details

Live surcharge load

Cantilever

 $h_{stem} = 14.92 \text{ ft}$

 $t_{\text{stem}} = 12 \text{ in}$

 α = 90 deg

 $\gamma_{\text{stem}} = 150 \text{ pcf}$

 $I_{toe} = 30 \text{ ft}$

t_{base} = 12 in

 $p_{key} = 0 \text{ ft}$

dkey = 6 ft -

ukey - U It

 $t_{key} = 12 in$

γ_{base} = 150 pcf

h_{ret} = **14.67** ft

 $\beta = 0 \deg$

 $d_{cover} = 0.25 \text{ ft}$

Medium dense well graded sand

 $\gamma_{mr} = 135 \text{ pcf}$

 $\gamma_{sr} = 145 \text{ pcf}$

 $\phi_r = 30 \text{ deg}$

 $\delta_r = 0 \text{ deg}$

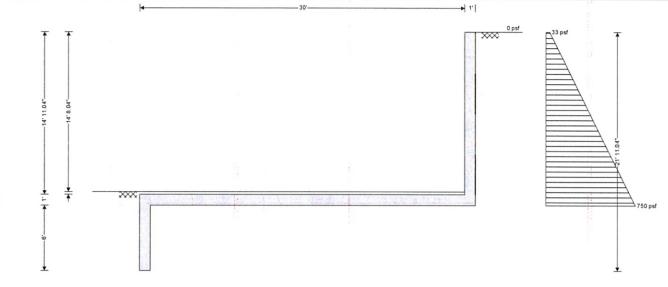
Medium dense well graded sand

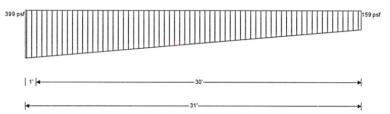
 $\gamma_{mb} = 115 \text{ pcf}$

 $c_b = 0 psf$

 $\phi_b = 30 \text{ deg}$

 $\delta_b = 15 \deg$


 $\delta_{bb} = 30 \text{ deg}$


P_{bearing} = 3000 psf

Surcharge_L = 100 psf

Project		Job Ref.			
Arboretum Pon	d #3 Storm Wa				
Section Walls				Sheet no./rev.	
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date

Calculate retaining wall geometry

Base length

Base height

Moist soil height

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component
- Distance to horizontal component above key

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Area of base soil

- Distance to vertical component
- Distance to horizontal component

Area of excavated base soil

- Distance to vertical component
- Distance to horizontal component

Using Coulomb theory

Active pressure coefficient

$$I_{base} = I_{toe} + t_{stem} = 31 \text{ ft}$$

$$h_{base} = t_{base} + d_{kev} = 7 \text{ ft}$$

$$h_{\text{moist}} = h_{\text{soil}} = 14.92 \text{ ft}$$

$$x_{sur v} = I_{base} - I_{heel} / 2 = 31 ft$$

$$h_{eff} = h_{base} + d_{cover} + h_{ret} = 21.92 \text{ ft}$$

$$x_{sur_h} = h_{eff} / 2 - d_{key} = 4.96 \text{ ft}$$

$$x_{sur_h_a} = (h_{eff} - d_{key}) / 2 = 7.96 \text{ ft}$$

$$A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 14.92 \text{ ft}^2$$

$$x_{stem} = I_{toe} + t_{stem} / 2 = 30.5 ft$$

$$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} + d_{\text{key}} \times t_{\text{key}} = 37 \text{ ft}^2$$

$$x_{base} = (l_{base}^2 \times t_{base} / 2 + d_{key} \times t_{key} \times (p_{key} + t_{key} / 2)) / A_{base} = 13.068 \text{ ft}$$

g1= (1.2)(16)(750)= 1440psf R1= 1440(14.67)/2=10156015/f4

M= R, d,= 51,744 ft-16/ft

$$A_{pass} = d_{cover} \times I_{toe} = 7.5 \text{ ft}^2$$

$$x_{pass_h} = (d_{cover} + h_{base}) / 3 - d_{key} = -3.583 ft$$

$$A_{\text{exc}} = h_{\text{pass}} \times I_{\text{toe}} = 7.5 \text{ ft}^2$$

$$x_{exc_v} = I_{base} - (h_{pass} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{exc} = 15 ft$$

$$x_{exc_h} = (h_{pass} + h_{base}) / 3 - d_{key} = -3.583 ft$$

$$K_A = \sin(\alpha + \phi_r)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_r) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\alpha)^2 \times \sin(\alpha - \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\alpha)^2 \times \sin(\alpha - \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\alpha)^2 \times \sin(\alpha - \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\sin(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \beta) / (\sin(\phi_r + \delta_r)) \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \delta_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \phi_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \phi_r)} \times \sin(\phi_r - \phi_r)] \times [1 + \sqrt{\cos(\phi_r + \phi_r)} \times \sin(\phi_r - \phi_r)] \times [1$$

$$(\sin(\alpha - \delta_r) \times \sin(\alpha + \beta))]^2) = 0.333$$

Project Arboretum Por	nd #3 Storm Wa	Job Ref.			
Section Walls				Sheet no./rev.	
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date

Passive pressure coefficient

 $K_P = \sin(90 - \phi_b)^2 / (\sin(90 + \delta_b) \times [1 - \sqrt{\sin(\phi_b + \delta_b)} \times \sin(\phi_b) / (\sin(90 + \delta_b)) \times [1 - \sqrt{\sin(\phi_b + \delta_b)} \times \sin(\phi_b) / (\sin(\phi_b + \delta_b))]$

 $\delta_b))]]^2) = 4.977$

From IBC 2009 cl.1807.2.3 Safety factor

Load combination 1

1.0 × Dead + 1.0 × Live + 1.0 × Lateral earth

Sliding check

Vertical forces on wall

Wall stem $F_{stem} = A_{stem} \times \gamma_{stem} = 2238 \text{ plf}$ Wall base $F_{base} = A_{base} \times \gamma_{base} = 5550 \text{ plf}$

Base soil $F_{exc_v} = A_{exc} \times \gamma_{mb} = 863 \text{ plf}$

Total $F_{total_v} = F_{stem} + F_{base} + F_{exc_v} = 8651 \text{ plf}$

Horizontal forces on wall

Surcharge load $F_{sur_h} = K_A \times Surcharge_L \times h_{eff} = 731 \ plf$ Moist retained soil $F_{moist_h} = K_A \times \gamma_{mr} \times h_{eff}^2 / 2 = 10811 \ plf$ Total $F_{total_h} = F_{moist_h} + F_{sur_h} = 11542 \ plf$

Check stability against sliding

Base soil resistance $F_{\text{exc_h}} = K_{P} \times \cos(\delta_{b}) \times \gamma_{\text{mb}} \times (h_{\text{pass}} + h_{\text{base}})^{2} / 2 = 14528 \text{ plf}$

Base friction $F_{friction} = F_{total_v} \times tan(\delta_{bb}) = 4994 \text{ plf}$ Resistance to sliding $F_{rest} = F_{exc_h} + F_{friction} = 19523 \text{ plf}$ Factor of safety $FoS_{sl} = F_{rest} / F_{total_h} = 1.691 > 1.5$

PASS - Factor of safety against sliding is adequate

Overturning check

Vertical forces on wall

Wall stem $F_{stem} = A_{stem} \times \gamma_{stem} = 2238 \text{ plf}$ Wall base $F_{base} = A_{base} \times \gamma_{base} = 5550 \text{ plf}$ Base soil $F_{exc_v} = A_{exc} \times \gamma_{mb} = 863 \text{ plf}$

Total $F_{total_v} = F_{stem} + F_{base} + F_{exc v} = 8651 \text{ plf}$

Horizontal forces on wall

Surcharge load $F_{sur_h} = K_A \times Surcharge_L \times (h_{eff} - d_{key}) = 531 plf$ Moist retained soil $F_{moist_h} = K_A \times \gamma_{mr} \times (h_{eff} - d_{key})^2 / 2 = 5703 plf$

Base soil $F_{\text{exc_h}} = \text{max}(-K_P \times \cos(\delta_b) \times \gamma_{\text{mb}} \times (h_{\text{pass}} + h_{\text{base}})^2 / 2, \text{ min}(-F_{\text{moist_h}} - F_{\text{sur_h}}, 0)$

plf) = -6233 plf

Total $F_{total_h} = F_{moist_h} + F_{exc_h} + F_{sur_h} = 0 \text{ plf}$

Overturning moments on wall

Surcharge load $M_{sur_OT} = F_{sur_h} \times x_{sur_h_a} = 4224 \text{ lb_ft/ft}$ Moist retained soil $M_{moist_OT} = F_{moist_h} \times x_{moist_h_a} = 30262 \text{ lb_ft/ft}$ Base soil $M_{exc_OT} = F_{exc_v} \times x_{exc_v} = 12937 \text{ lb_ft/ft}$

Total $M_{\text{total_OT}} = M_{\text{moist_OT}} + M_{\text{exc_OT}} + M_{\text{sur_OT}} = 47423 \text{ lb_ft/ft}$

Restoring moments on wall

Wall stem $\begin{aligned} & M_{\text{stem_R}} = F_{\text{stem}} \times x_{\text{stem}} = 68259 \text{ lb_ft/ft} \\ & \text{Wall base} \end{aligned}$ $\begin{aligned} & M_{\text{base_R}} = F_{\text{base}} \times x_{\text{base}} = 72525 \text{ lb_ft/ft} \\ & \text{Base soil} \end{aligned}$ $\begin{aligned} & M_{\text{exc_R}} = F_{\text{exc_v}} \times x_{\text{exc_v}} = 12937 \text{ lb_ft/ft} \end{aligned}$

Project		Job Ref.			
Arboretum Pon	d #3 Storm Wat				
Section				Sheet no./rev.	
Walls				4	
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date

Total

 $M_{total_R} = M_{stem_R} + M_{base_R} + M_{exc_R} = 153721 \text{ lb_ft/ft}$

Check stability against overturning

Factor of safety

 $FoS_{ot} = M_{total R} / M_{total OT} = 3.241 > 1.5$

PASS - Factor of safety against overturning is adequate

Bearing pressure check

Vertical forces on wall

Wall stem

Wall base

Base soil

Total

 $F_{\text{stem}} = A_{\text{stem}} \times \gamma_{\text{stem}} = 2238 \text{ plf}$

 $F_{base} = A_{base} \times \gamma_{base} = 5550 \text{ plf}$

 $F_{pass_v} = A_{pass} \times \gamma_{mb} = 863 \text{ plf}$ $F_{\text{total v}} = F_{\text{stem}} + F_{\text{base}} + F_{\text{pass v}} = 8651 \text{ plf}$

Horizontal forces on wall

Surcharge load

Moist retained soil

Base soil

Total

 $F_{sur_h} = K_A \times Surcharge_L \times (h_{eff} - d_{key}) = 531 plf$

 $F_{\text{moist h}} = K_A \times \gamma_{\text{mr}} \times (h_{\text{eff}} - d_{\text{key}})^2 / 2 = 5703 \text{ plf}$

 $F_{pass_h} = max(-K_P \times cos(\delta_b) \times \gamma_{mb} \times (d_{cover} + h_{base})^2 / 2$, min(- $F_{moist_h} - F_{sur_h} + h_{base}$

 $F_{\text{total v}} \times \text{tan}(\delta_{\text{bb}}), 0 \text{ plf}) = -1239 \text{ plf}$

 $F_{\text{total h}} = F_{\text{moist h}} + F_{\text{pass h}} + F_{\text{sur h}} - F_{\text{total v}} \times \tan(\delta_{\text{bb}}) = 0$ plf

Moments on wall

Wall stem

Wall base

Surcharge load

Moist retained soil

Base soil

Total

 $M_{stem} = F_{stem} \times x_{stem} = 68259 \text{ lb ft/ft}$

 $M_{base} = F_{base} \times x_{base} = 72525 \text{ lb}_{ft/ft}$

 $M_{sur} = -F_{sur_h} \times x_{sur_h_a} = -4224 \text{ lb_ft/ft}$

 $M_{moist} = -F_{moist h} \times x_{moist h a} = -30262 lb ft/ft$

 $M_{pass} = F_{pass_v} \times x_{pass_v} - F_{pass_h} \times x_{pass_h} = 8498 \text{ lb_ft/ft}$

M_{total} = M_{stem} + M_{base} + M_{moist} + M_{pass} + M_{sur} = 114797 lb ft/ft

Check bearing pressure

Distance to reaction

Eccentricity of reaction

Loaded length of base

Bearing pressure at toe

Bearing pressure at heel

Factor of safety

 $\bar{x} = M_{\text{total}} / F_{\text{total } v} = 13.271 \text{ ft}$

 $e = \bar{x} - I_{base} / 2 = -2.229 \text{ ft}$

I_{load} = I_{base} = 31 ft

 $q_{toe} = F_{total \ v} / I_{base} \times (1 - 6 \times e / I_{base}) = 399 psf$

 $q_{heel} = F_{total_v} / I_{base} \times (1 + 6 \times e / I_{base}) = 159 psf$

FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 7.51

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with ACI 318-08

Tedds calculation version 2.4.06

Concrete details

Compressive strength of concrete

Concrete type

Yield strength of reinforcement

Reinforcement details

 $f_v = 60000 \text{ psi}$

 $f_c = 4000 \text{ psi}$

Normal weight

Modulus of elasticity or reinforcement

E_s = 29000000 psi

Project					Job Ref.	
Arboretum	Pond #3 Storm W	е				
Section	55.			Sheet no./rev.		
Walls				5		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
JJE	11/12/2014					

Cover	to	reinforcement
COVE	w	remnorcement

Front face of stem

Rear face of stem Top face of base

Bottom face of base Chh = 3 in

From IBC 2009 cl.1605.2.1 Basic load combinations

Load combination no.1

Load combination no.2 Load combination no.3

Load combination no.4

Check stem design at base of stem

Depth of section

Rectangular section in flexure - Chapter 10

Factored bending moment combination 2

Depth of tension reinforcement

Tension reinforcement provided

Area of tension reinforcement provided Maximum reinforcement spacing - cl.14.3.5

Depth of compression block

Neutral axis factor - cl.10.2.7.3

Depth to neutral axis

Strain in reinforcement

Strength reduction factor

Nominal flexural strength

Design flexural strength

C_{st} = 1.5 in C_{sr} = 2 in C_{bt} = 2 in C_{bt} = 2 in C_{bt} = 3 in in effective for Tension reinforcement.

1.4 × Dead

1.2 × Dead + 1.6 × Live + 1.6 × Lateral earth

1.2 × Dead + 1.0 × Earthquake + 1.0 × Live

0.9 × Dead + 1.0 × Earthquake + 1.6 × Lateral earth

h = 12 in

M = 45792 lb ft/ft

 $d = h - c_{sr} - \phi_{sr} / 2 = 9.688$ in No.5 bars @ 12" c/c

 $A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 0.307 \text{ in}^2/\text{ft}$

 $s_{max} = min(18 in, 3 \times h) = 18 in$

PASS - Reinforcement is adequately spaced

 $a = A_{sr,prov} \times f_y / (0.85 \times f_c) = 0.451$ in

 $\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.85$

 $c = a / \beta_1 = 0.531$ in

 $\varepsilon_t = 0.003 \times (d - c) / c = 0.051753$

Section is in the tension controlled zone

 $\phi_f = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$

 $M_n = A_{sr,prov} \times f_y \times (d - a / 2) = 14514 lb_ft/ft$

 $\phi M_n = \phi_f \times M_n = 13063 \text{ lb}_ft/ft$

 $M / \phi M_0 = 3.505$

FAIL - Design flexural strength is less than factored bending moment

By iteration, reinforcement required by analysis A_{sr.des} = 1.151 in²/ft

Minimum area of tension reinforcement - exp. 10-3 $A_{sr,min} = max(3 \times \sqrt{(f_c \times 1 psi)}, 200 psi) \times d/f_v = 0.388 in^2/ft$

FAIL - Area of reinforcement provided is less than minimum area of reinforcement required

Rectangular section in shear - Chapter 11

Factored shear force

V = 8810 lb/ft

Concrete modification factor - cl.8.6.1

 $\lambda = 1$

Nominal concrete shear strength - exp.11-3

 $V_c = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times d = 14705 \text{ lb/ft}$

Strength reduction factor

 $\phi_s = 0.75$

Design concrete shear strength - cl.11.4.6.1

 $\phi V_c = \phi_s \times V_c = 11028 \text{ lb/ft}$

 $V / \phi V_c = 0.799$

PASS - No shear reinforcement is required

Horizontal reinforcement parallel to face of stem

Minimum area of reinforcement - cl.14.3.3 $A_{\text{sx.reg}} = 0.002 \times t_{\text{stem}} = 0.288 \text{ in}^2/\text{ft}$

Project Arboretum Pon	d #3 Storm Wat	Job Ref.			
Section Walls				Sheet no./rev.	
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date

Transverse reinforcement provided

No.5 bars @ 12" c/c

Area of transverse reinforcement provided

 $A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 0.307 \text{ in}^2/\text{ft}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

Depth of section

h = 12 in

BASE NOT CONSIDERED

Rectangular section in flexure - Chapter 10

Factored bending moment combination 2

Depth of tension reinforcement

Tension reinforcement provided

Area of tension reinforcement provided

Maximum reinforcement spacing - cl.15.10.4

M = 53815 lb_ft/ft

 $d = h - c_{bb} - \phi_{bb} / 2 = 8.688$ in

No.5 bars @ 12" c/c

 $A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 0.307 \text{ in}^2/\text{ft}$

 $s_{max} = 18 in$

PASS - Reinforcement is adequately spaced

Depth of compression block

Neutral axis factor - cl.10.2.7.3

Depth to neutral axis

Strain in reinforcement

 $a = A_{bb.prov} \times f_y / (0.85 \times f_c) = 0.451$ in

 $\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.85$

 $c = a / \beta_1 = 0.531$ in

 $\varepsilon_t = 0.003 \times (d - c) / c = 0.046101$

Section is in the tension controlled zone

Strength reduction factor

 $\phi_f = min(max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$ $M_n = A_{bb,prov} \times f_y \times (d - a / 2) = 12980 \text{ lb}_ft/ft$

Nominal flexural strength
Design flexural strength

 $\phi M_n = \phi_f \times M_n = 11682 \text{ lb_ft/ft}$

 $M / \phi M_0 = 4.607$

FAIL - Design flexural strength is less than factored bending moment

By iteration, reinforcement required by analysis

 $A_{bb.des} = 1.591 \text{ in}^2/\text{ft}$

Minimum area of tension reinforcement - cl.7.12.2.1

 $A_{bb,min} = 0.0018 \times h = 0.259 \text{ in}^2/\text{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Chapter 11

Factored shear force

V = 2786 lb/ft

Concrete modification factor - cl.8.6.1

 $\lambda = 1$

Nominal concrete shear strength - exp.11-3

 $V_c = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times d = 13187 \text{ lb/ft}$

Strength reduction factor

 $\phi_s = 0.75$

Design concrete shear strength - cl.11.4.6.1

 $\phi V_c = \phi_s \times V_c = 9890 \text{ lb/ft}$

 $V / \phi V_c = 0.282$

PASS - No shear reinforcement is required

Rectangular section in flexure - Chapter 10

Factored bending moment combination 1

M = 1392 lb_ft/ft

Depth of tension reinforcement

 $d = h - c_{bt} - \phi_{bt} / 2 = 9.75$ in

Tension reinforcement provided

No.4 bars @ 9" c/c

Area of tension reinforcement provided

 $A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 0.262 \text{ in}^2/\text{ft}$

Maximum reinforcement spacing - cl.15.10.4

 $s_{max} = 18 in$

PASS - Reinforcement is adequately spaced

Depth of compression block

 $a = A_{bt.prov} \times f_y / (0.85 \times f_c) = 0.385 in$

Neutral axis factor - cl.10.2.7.3

 $\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.85$

Depth to neutral axis

 $c = a / \beta_1 = 0.453$ in

Project Arboretum Pon	nd #3 Storm Wat	Job Ref.			
Section Walls				Sheet no./rev.	
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date

Strain in reinforcement

 $\epsilon_t = 0.003 \times (d - c) / c = 0.061578$

Section is in the tension controlled zone

Strength reduction factor

 $\phi_f = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$

Nominal flexural strength

 $M_n = A_{bt.prov} \times f_y \times (d - a / 2) = 12511 lb_ft/ft$

Design flexural strength

 $\phi M_0 = \phi_f \times M_0 = 11260 \text{ lb ft/ft}$

 $M / \phi M_0 = 0.124$

PASS - Design flexural strength exceeds factored bending moment

By iteration, reinforcement required by analysis

 $A_{bt.des} = 0.032 \text{ in}^2/\text{ft}$

Minimum area of tension reinforcement - cl.7.12.2.1

 $A_{bt,min} = 0.0018 \times h = 0.259 \text{ in}^2/\text{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Check key design

Depth of section

h = 12 in

Rectangular section in flexure - Chapter 10

Factored bending moment combination 2

M = 21283 lb_ft/ft

Depth of tension reinforcement

 $d = h - c_{bb} - \phi_k / 2 = 8.688$ in

Tension reinforcement provided

No.5 bars @ 6" c/c

Area of tension reinforcement provided

 $A_{k,prov} = \pi \times \phi_k^2 / (4 \times s_k) = 0.614 \text{ in}^2/\text{ft}$

Maximum reinforcement spacing - cl.15.10.4

 $s_{max} = 18 in$

PASS - Reinforcement is adequately spaced

Section is in the tension controlled zone

Depth of compression block

 $a = A_{k,prov} \times f_v / (0.85 \times f_c) = 0.902$ in

Neutral axis factor - cl.10.2.7.3

 $\beta_1 = \min(\max(0.85 - 0.05 \times (f_c - 4 \text{ ksi}) / 1 \text{ ksi}, 0.65), 0.85) = 0.85$

Depth to neutral axis

 $c = a / \beta_1 = 1.062$ in

Strain in reinforcement

 $\varepsilon_t = 0.003 \times (d - c) / c = 0.021551$

 $\phi_f = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$

Strength reduction factor

Nominal flexural strength

 $M_n = A_{k.prov} \times f_y \times (d - a / 2) = 25269 lb_ft/ft$

Design flexural strength

 $\phi M_n = \phi_f \times M_n = 22742 \text{ lb_ft/ft}$

 $M / \phi M_n = 0.936$

PASS - Design flexural strength exceeds factored bending moment

By iteration, reinforcement required by analysis

 $A_{k.des} = 0.572 \text{ in}^2/\text{ft}$

Minimum area of tension reinforcement - cl.7.12.2.1

 $A_{k.min} = 0.0018 \times h = 0.259 \text{ in}^2/\text{ft}$

PASS - Area of reinforcement provided is greater than minimum area of reinforcement required

Rectangular section in shear - Chapter 11

Factored shear force

V = 5045 lb/ft

Concrete modification factor - cl.8.6.1

 $\lambda = 1$

Nominal concrete shear strength - exp.11-3

 $V_c = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times d = 13187 \text{ lb/ft}$

Strength reduction factor

 $\phi_s = 0.75$

Design concrete shear strength - cl.11.4.6.1

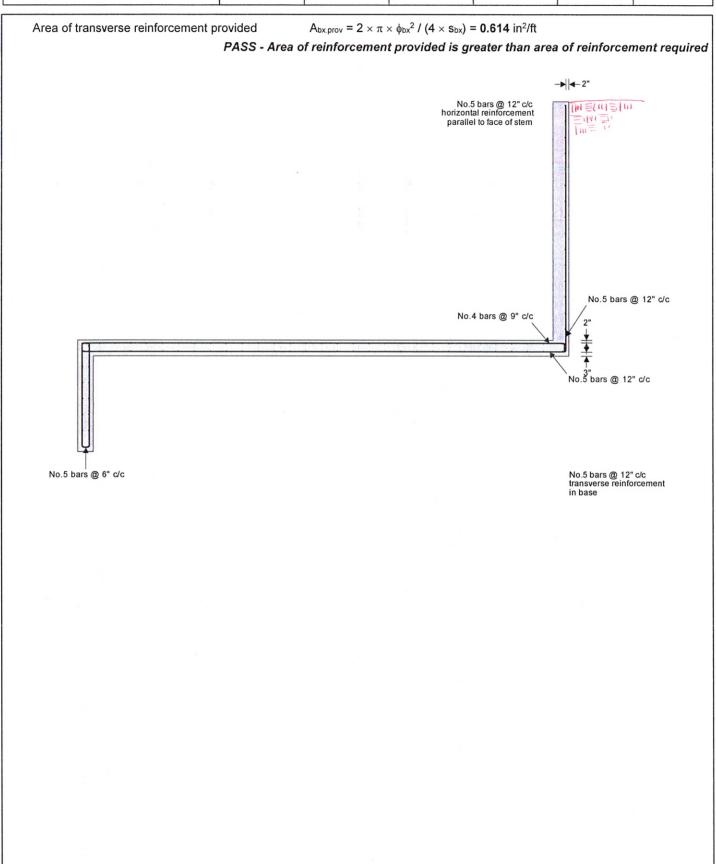
 $\phi V_c = \phi_s \times V_c = 9890 \text{ lb/ft}$

 $V / \phi V_c = 0.510$

PASS - No shear reinforcement is required

Transverse reinforcement parallel to base

Minimum area of reinforcement - cl.7.12.2.1


 $A_{bx.req} = 0.0018 \times t_{base} = 0.259 \text{ in}^2/\text{ft}$

Transverse reinforcement provided

No.5 bars @ 12" c/c each face

Project Arboretum Pond #3 Storm Water Screen Treatment Structure							
Section Walls				Sheet no./rev.			
Calc. by JJE	Date 11/12/2014	Chk'd by	Date	App'd by	Date		

