City of Madison Planning Division 215 Martin Luther King Jr. Blvd. I Room LL. 100 I P.O. Box 2985 I

1. LOCATION

Project Address: Taney Park, City of Madison
Aldermanic District: 2
2. PROJECT

Date Submitted: 12/2/2013
Project Title / Description: Marston Avenue and Sherman Avenue Pedestrian Bridge Restoration at Tenney Park
This is an application for: (check all that apply)
Alteration / Addition to a Designated Madison Landmark
Alteration / Addition to a building adjacent to a Designated Madison Landmark
Alteration / Addition to a building in a Local Historic District (specify):
\square Mansion Hill
\square University Heights
\square Third Lake Ridge
\square Marquette Bungalows

- First Settlement

New Construction in a Local Historic District (specify):

- Mansion Hill
\square Third Lake Ridge
- First Settlement
\square Marquette Bungalows

\square Demolition

 Variance from the Landmarks Ordinance}\square Referral from Common Council, Plan Commission, or other referral X Other (specify): Restoration of a Designated Madison Landmark

3. APPLICANT

Applicant's Name: Keith Behrend, P.E. _Company: Strand Associates, Inc.

Property Owner (if not applicant): City of Madison Parks Division
Address: 210 Martin Luther King Jr. Blvd, Rm 104 City/State: Madison, WI__Zip: 53701-2987 $_{\text {P }}^{\text {P }}$
P.O. Box 2987
Property Owner's Signature:

Date:

GENERAL SUBMITTAL REQUIREMENTS

Madison, WI 53701-2985

November 29, 2013

Madison Landmarks Commission
Department of Planning and Development
215 Martin Luther King Jr. Blvd.
PO Box 2985
Madison, WI 53701-2985
Re: Madison Landmarks Commission Application for Pedestrian Bridge Restoration at Tenney Park, City of Madison

Dear Sir or Madam:
Enclosed is the Madison Landmarks Commission Application form including supporting information for the Marston Avenue and Sherman Avenue Pedestrian Bridge Restoration Work at Tenney Park in the City of Madison, Wisconsin.

Project Description

Tenney Park is a 37 -acre park located in Madison adjacent to the Yahara River. Most of the park is located between Sherman Avenue and East Johnson Street, west of the Yahara River. Within the park, there is a serpentine lagoon with a central 10 -acre island that is accessed via multiple bridges. Two of the bridges that access the island are the Marston Avenue pedestrian bridge and the Sherman Avenue pedestrian bridge. Both bridges are listed on the Wisconsin State Register of Historic Places.

The Marston Avenue pedestrian bridge, constructed in 1912, is a reinforced concrete arch bridge. The bridge spans approximately 50 feet over the lagoon and is approximately 80 feet long and 16 feet wide. The bridge includes integral concrete parapets. The bridge deck cross section is asphalt pavement and earth fill over a concrete arch. The bridge is used for pedestrian traffic only. Except at the underside of the arch, the surface texture of the existing exposed-to-view concrete has a "weathered" look, with the course aggregate exposed. There are numerous locations on the bridge where the existing concrete shows signs of significant deterioration. All new repair concrete placed will be finished to closely match the appearance of the existing weathered concrete. A petrographic examination of the existing concrete is being performed to aid the restoration contractor in designing a concrete mix that will match the mechanical and aesthetic properties of the original concrete. The following proposed restoration work is being planned for the existing Marston Avenue pedestrian bridge.

Madison Landmarks Commission
Department of Planning and Development
Page 2
November 29, 2013

Proposed Marston Avenue Pedestrian Bridge Restoration Work

1. Clean all above-grade concrete surfaces of the bridge before any new restoration work is completed. There are varying amounts of organic material, such as moss and lichens, on the surfaces of the bridge that cause the existing concrete to appear darker than it actually is. This organic material will be cleaned off so that the cleaned appearance of the bridge can be used as a baseline reference to match the aesthetics of the new work.
2. Repair all spalled and unsound concrete on the underside of the arch. Since the exposed concrete on the underside of the arch does not have a "weathered" look, a commercially available concrete surface repair mortar will be used to repair spalled concrete and finished to match the existing concrete surface finish. Where existing reinforcing steel is incorporated into new repair work, it will be coated with a rust-inhibitive primer prior to the installation of the surface repair mortar to prevent future spalling. It is estimated that concrete surface repairs will be required on about 50 percent of the underside of the existing arch. Upon completion of concrete surface repair work, a breathable waterproof cement-based coating will be applied to the underside of the arch to provide a uniform appearance and to seal and waterproof the concrete surface. The color of the coating will be the manufacturer's standard gray finish to match the existing concrete.
3. Replace the outer portions of the concrete arch with new reinforced concrete finished to match the "weathered" look of the existing concrete. Almost all the outer portions of the concrete arches on both sides of the bridge show signs of significant spalled and unsound concrete with many locations where the concrete has already "fallen" off. The deteriorated concrete on the outer portions of the arch will be removed to sound concrete and then reformed to match the geometry of the existing arches.
4. Remove the upper portion of the concrete parapets (copings) on both sides of the bridge. The coping on the south side of the bridge is in significantly worse shape than the coping on the north side, but both copings will be replaced so that the aesthetics of the copings match. Both copings will be removed and reformed to match the geometry of the existing copings. The new concrete will be finished to match the "weathered" look of the existing concrete.
5. Perform concrete surface repairs to all above-grade surfaces exposed to view. Concrete repairs will be finished to match the "weathered" look of the existing concrete.
6. Install a waterproofing membrane on the entire upper surface of the concrete arch to prevent future water damage from occurring to the existing concrete arch.

Madison Landmarks Commission
Department of Planning and Development
Page 3
November 29, 2013
7. Apply a migrating corrosion inhibitor to both the existing and new concrete surfaces of the bridge to protect the reinforcing steel in the concrete from future corrosion. The migrating corrosion inhibitor will not affect the appearance of the concrete.
8. Apply a concrete sealer to the existing and new concrete exposed to view to protect new and existing concrete from the damaging effects of water intrusion. The concrete sealer will not affect the appearance of the concrete.
9. Install new asphalt pavement on the bridge and 10 feet beyond the ends of the bridge. The profile of the new asphalt path will match the existing profile.

The Sherman Avenue pedestrian bridge, constructed in 1929, is a reinforced concrete arch bridge with a rock-faced random limestone ashlar veneer. The bridge spans approximately 50 feet over the lagoon and is approximately 70 feet long and 12.5 feet wide. The bridge includes integral concrete parapets that are clad with limestone veneer. The bridge deck cross section is asphalt pavement and earth fill over a concrete arch. The bridge is used for pedestrian traffic only. Masonry restoration including repointing is being proposed along with some concrete repair work on the underside of the arch. A petrographic analysis is being performed on the original mortar that was used so that it can be matched for repointing work. The following proposed restoration work is being planned for the existing Sherman Avenue pedestrian bridge.

Proposed Sherman Avenue Pedestrian Bridge Restoration Work

1. Clean all above-grade masonry surfaces of the bridge before any new restoration work is completed. There are varying amounts of organic material, such as moss and lichens, on the surfaces of the bridge that cause the existing masonry to appear darker than it actually is. This organic material will be cleaned off so that the cleaned appearance of the bridge can be used as a baseline reference to match the aesthetics of the new work to.
2. Repair all spalled and unsound concrete on the underside of the arch. A commercially available concrete surface repair mortar will be used to repair spalled concrete and finished to match the existing concrete surface finish. Where existing reinforcing steel is incorporated into new repair work, it will be coated with a rust-inhibitive primer prior to the installation of the surface repair mortar to prevent future spalling. It is estimated that concrete surface repairs will be required on about 20 percent of the underside of the existing arch. Upon completion of concrete surface repair work, a breathable waterproof cement-based coating will be applied to the underside of the arch to provide a uniform appearance and to seal and waterproof the concrete surface. The color of the coating will be the manufacturer's standard gray finish to match the existing concrete.

Madison Landmarks Commission
Department of Planning and Development
Page 4
November 29, 2013
3. Repair existing above-grade stones that are cracked using epoxy-crack injection.
4. Repoint existing deteriorated above-grade mortar joints.
5. Spray apply migrating corrosion inhibitor to the underside of the concrete arch to protect the reinforcing steel in the concrete from future corrosion. The migrating corrosion inhibitor will not affect the appearance of the concrete.
6. Apply a sealer to all surfaces of masonry exposed to view to protect the masonry from the damaging effects of water intrusion. The sealer will not affect the appearance of the masonry.
7. Install new asphalt pavement on the bridge and 10 feet beyond the ends of the bridge. The profile of the new asphalt path will match the existing profile.

All proposed restoration work for the two bridges is being planned so that the original aesthetics of the bridges will be maintained. The proposed work is being designed to repair deficiencies in the existing bridges as well as prolong the useable life of each bridge.

In support of the Madison Landmarks Commission Application, we have included the following documents:

1. Completed Madison Landmarks Commission application form.
2. Project location maps.
3. Proposed project construction drawings.
4. Proposed project technical specifications.
5. Photos of the existing bridges.
6. State historic property register listing information.

Please call me if you have any questions or require additional information.
Sincerely,
STRAND ASSOCIATES, INC. ${ }^{\text {© }}$
Keth R Behred
Keith R. Behrend, P.E.
c/enc.: Thomas J. Maglio, City of Madison

MARSTON AVENUE AND SHERMAN AVENUE PEDESTRIAN BRIDGE RESTORATION WORK AT TENNEY PARK

FOR THE

CITY OF MADISON PARKS DIVISION MADISON, WISCONSIN FEBRUARY, 2014

KEY/SPECIFIC NOTE CALL-OUT REVIIION

+ +E 1000.00 FNISH Elevation
EXITTNG OBuECTS ARE SCREENED
Emexime exiting obuects to be demolished
$=\Longrightarrow$ HIDDEN Obuect
ARCHITECTURAL SYMBOLS

TOPOGRAPHICAL SYMBOLS
4^{4} BENCH MARK
0^{2} CONCRETE CORE DRLLED FOR
(B) Existing deciouous tree SLLT FENCE -

ASSOCIATES

GENERAL NOTES

KEY NOTES

(1) SOUNO ENTIRE UNDERSIDE OF CONCRETE ARCH ABOVE THE
NORMAL HIGH WATER ELEVATION IN PRESENCE OF ENGINER NORMAL HIGH WATER ELEVATION IN PRESENCE OF ENGINER
AND PERFORM CONCRETE SURFACE REPARS WHERE REOURED.
(2) CLEAN ALL ABOVE-CRADE VETTICAL SURFAACES OF CONCRETE
(3) APPLY CONCRETE SEALER TO ALL EXPOSED ABOVE-GRADE ACCORDANCE WITH THE SPECCAL PROVISIINS.
(4) SOUND ALL EXISTING ABOVE-GRADE CONCRETE SURFACES EXPOSED TO VIEW AND PE
REPAIRS WHERE REOURED.
(5) WATERPROOFNG MEMBRANE APPLY TO ENTIRE TOP SURFACE OF EXISTING CONCRETE ARCH AN WRAP UP INSIDE FACES OF
CONCRETE PARAPETS TO UNDERSIDE OF NEW ASPALTT PAVING, PREFABRICATED DRAINAGE COMPOSTEE OVER ALL MEMBRANE SURFACE.
 VVER SELECT FILL.
(7) APPLY CEMENT-BASED WAATEPRROOFNG COATNG TO ENTRE WATER ELEVATON.
(8) NSTALL $1 / 1 / 2$ CONCRETE TOPPING OVER ENTRE TOP SURFAC
(9) ALL Exposeo above-crade concrete surfaces to receve PENETRATING CORROS
SPECIAL PROVISONS.
(10) GRIND EXISTING INSIDE FACE OF CONCRETE PARAPETS BELOW
 ADHERE AATERPROOFNG MEEMBRANE
TO CONCRETE TOPPING BID ITEM.
(11) SAYCUT $1 / 2^{*} \times 1 / 2^{n}$ REGLET FOR TERMNATION OF WATERPROOFING 5 RECCOMMENDED BY THE NLOR AS RECCOMMENO TONTL TO MI MEM

COPING DETAIL $\binom{\mathrm{C}}{53}$

