City of Madison Engineering Division

John Nolen Drive Reconstruction

Transportation Commission
May 24, 2023

Introduction

- John Nolen Drive (Lakeside Street to North Shore Drive) Reconstruction Starting in 2025
- Includes Pavement, Bridges, Path Facility, North Shore Drive Intersection
- NOT Lakeside Street Intersection
- Coordinating with Lake Monona Waterfront Master Plan
- Previous Presentations to Public and Transportation Commission
- Street Typical Section
- Pathway Typical Section
- Bridge Structure Sections
- North Shore Drive Intersection (follow up is primary focus of this meeting)
- Underpass/Overpass Alternatives
- NOT part of this project, but not precluded as a potential future improvement
- Broom Street Intersection
- NOT part of this project, but not precluded as a potential future improvement
- Today's Focus is the North Shore Drive Intersection
- Received Lot's of Feedback on Final Design Details to Consider
- Stop Bar Locations
- Bicycle Queuing Areas Adjacent to Capital City Path
- Traffic Signal Head Locations/Types
- Push Button Locations/Types
- Crosswalk Width \& Separation for Different Modes

North Shore Drive Intersection

Channelized Right Turns - Safety Studies \& Research

SOURCE

Pedestrian Safety Guide and Countermeasure Selection System (USDOT/FHWA)

DETAILS

http://www.pedbikesafe.org/pedsafe/countermeasures detail.cfm?CM NUM=24

- Slows Turning Vehicles
- Allow Drivers \& Pedestrians to Easily See Each Other
- Reduce Pedestrian Exposure in the Roadway
- Reduce Complexity of Intersection by Breaking into Manageable Parts

https://www.cmfclearinghouse.org/study detail.php?stid=651

- Providing Right Turn Channelization as a Countermeasure for a Reduction in Traffic Fatalities \& Serious Injuries on All Public Roads (40\% Reduction)

Presented John Nolen Drive and North Shore Drive intersection alternatives to the TOPS
Laboratory at UW-Madison for feedback \& discussion

- Both intersection alternatives (2 \& 4B) are viable solutions
- Anytime an increase in user delay (vehicle or bicycle/pedestrian) is experienced at an intersection, an increase in non-compliance can be expected as well

North Shore Drive Intersection - Existing Conditions

Time Needed to Cross for Pedestrians
(1): 10 sec
(2): 27 sec

Full Crosswalk: 45 sec
Pedestrian Delay
AM and PM Peak (1-2 and 2-1): 39 sec
Bicycle Delay
AM and PM Peak: 40 sec
Worst Case Pedestrian Wait Time
AM and PM Peak: 82 sec

Intersection Delay
AM Peak: 124 sec
PM Peak: 147 sec

North Shore Drive Intersection - Alt 2
 (Single "L" Crossing w/ Islands)

Time Needed to Cross for Pedestrians
(1): 7 sec
(2): 16 sec
(3): 6 sec

Full Crosswalk: 41 sec
Pedestrian Delay
AM Peak (1-2-3 and 3-2-1): 64 sec PM Peak (1-2-3 and 3-2-1): 64 sec

Bicycle Delay

AM Peak (1-2-3 and 3-2-1): 64 sec PM Peak (1-2-3 and 3-2-1): 64 sec

Worst Case Pedestrian Wait Time AM and PM Peak: 85 sec

Intersection Delay AM Peak: 120 sec PM Peak: 179 sec

North Shore Drive Intersection - Alt 4B (single "L" crossing w/o islands)

Time Needed to Cross for Pedestrians Full Crosswalk: 29 seconds
Pedestrian Delay
AM Peak: 65 seconds
PM Peak: 65 seconds
Bicycle Delay
AM Peak: 65 seconds
PM Peak: 65 seconds
Worst Case Pedestrian Wait Time
AM and PM Peak: 114 seconds
Intersection Delay
AM Peak: 157 seconds
PM Peak: 175 seconds

AM Peak: 157 seconds
PM Peak: 175 seconds

Public Opinion Survey Results

North Shore Drive Intersection Survey Responses

Notes:
Survey Closed 5/15/2023
578 Responses

North Shore Drive - Summary

	ALTERNATIVES COMPARISON							
	Average Vehicle Delay (sec)	Average - Max Ped Delay S Crosswalk (sec)	Average - Max Ped Delay W Crosswalk (sec)	Visibility of Rt Turning Vehicle \& Path User in Crosswalk	Rt Turning Vehicle Speed Through Crosswalk after Stop Bar	Bike/Ped Crossing Length (S Crosswalk)	Bike/Ped Crossing Length (W Crosswalk)	Simplicity of Bike/Ped Crossing (S Crosswalk)
EXISTING	124/147 sec AM/PM 110 sec Cycle Length	$40-82 \mathrm{sec}$	N/A	Crosswalk on near-side of turning movement \& perpendicular to vehicle	Crosswalk on near-side of turning movement	158-ft to Cross Roadway	N/A	3 Segments \& Turns within Island
ALT 2 L-Crossing w/ Islands	120/179 AM/PM 150 sec Cycle Length	$\begin{gathered} + \\ 62-107 \mathrm{sec} \end{gathered}$	$\begin{gathered} \not+ \\ 64-85 \mathrm{sec} \end{gathered}$	Crosswalk on near-side of turning movement \& perpendicular to vehicle	Crosswalk on near-side of turning movement	125-ft to Cross Roadway	145-ft to Cross Roadway	3 Segments \& Turns within Island
ALT 4B L-Crossing w/o Islands	157/175 AM/PM 150 sec Cycle Length	$65-117 \mathrm{sec}$	$65-114 \mathrm{sec}$	Crosswalk on far-side of turning movement \& parallel to vehicle	Crosswalk on far-side of turning movement	90-ft to Cross Roadway	100-ft to Cross Roadway	2 Segments \& No Turns within Median

North Shore Drive - Staff \& TC Recommendation

Staff Recommendation

- Staff are OK with both alternatives (Alt 2 \& 4B)
- Staff recommend Alt 2:
- Lower user delay (Alt 2 vs 4B) likely result in improved user compliance
- Better visibility between right turning vehicles and people walking/biking
- Flexibility to include raised crossings on rt turns (slow vehicle speed)
- Staff realize Alt 4B benefits:
- Smaller roadway footprint (less pavement, may reduce speeds)
- Simpler \& shorter crosswalks
- Public support \& feedback

Transportation Commission Recommendation

- Feedback \& Thoughts

THANK YOU!

- Project Website: https://www.cityofmadison.com/JohnNolenDrive
- Contact: JohnNolenDrive@cityofmadison.com
$\underbrace{}_{\text {Engineering }}$

