Baseline Snake Species Occupancy in Madison-Area Prairie Restorations

By Will Vuyk Advisor: Professor Catherine Woodward

Article

A global reptile assessment highlights shared conservation needs of tetrapods

(Cox et al., 2022)

https://doi.org/10.1038/s41586-022-	04664-7
Received: 12 April 2021	
Accepted: 16 March 2022	
Published online: 27 April 2022	
Open access	

Neil Cox^{1,53}, Bruce E. Young^{2,53 \rightarrow}, Philip Bowles¹, Miguel Fernandez^{2,3,4}, Julie Marin⁵, Giovanni Rapacciuolo⁶, Monika Böhm⁷, Thomas M. Brooks^{8,9,10}, S. Blair Hedges¹¹, Craig Hilton-Taylor¹², Michael Hoffmann¹³, Richard K. B. Jenkins¹², Marcelo F. Tognelli¹, Graham J. Alexander¹⁴, Allen Allison¹⁵, Natalia B. Ananjeva¹⁶, Mark Auliya¹⁷, Luciano Javier Avila¹⁸, David G. Chapple¹⁹, Diego F. Cisneros-Heredia^{20,21}, Harold G. Cogger²², Guarino R. Colli²³, Anslem de Silva²⁴, Carla C. Eisemberg²⁵, Johannes Els²⁶, Ansel Fong G.²⁷, Tandora D. Grant²⁸, Rodney A. Hitchmough²⁹, Djoko T. Iskandar³⁰, Noriko Kidera^{31,32}, Marcio Martins³³, Shai Meiri³⁴, Nicola J. Mitchell³⁵, Sanjay Molur³⁶, Cristiano de C. Nogueira³³, Juan Carlos Ortiz³⁷, Johannes Penner^{38,39}, Anders G. J. Rhodin⁴⁰, Gilson A. Rivas⁴¹, Mark-Oliver Rödel³⁹, Uri Roll⁴², Kate L, Sanders⁴³, Georgina Santos-Barrera⁴⁴, Glenn M. Shea^{22,45}, Stephen Spawls⁵⁴, Bryan L. Stuart⁴⁶, Krystal A. Tolley^{14,47}, Jean-François Trape⁴⁸, Marcela A. Vidal⁴⁹, Philipp Wagner⁵⁰, Bryan P. Wallace⁵¹ & Yan Xie⁵²

Wisconsin Snakes

21 species (Wisconsin DNR)

9 species of special concern
4 endangered species

16 species found in Dane County, according to DNR range maps

Common Garter Snake
Common Water Snake

Dekay's Brown Snake

- Eastern Fox Snake
- Eastern Hog-nosed Snake
- Eastern Massasauga (Endangered)
- Gopher Snake (Special Concern)
- Gray Rat Snake (Special Concern)
- Lined Snake (Special Concern)

• Milk Snake

- Blue Racer (Special Concern)
- Plains Garter Snake (Special Concern)
- Red-bellied Snake
- Smooth Greensnake
- Timber Rattlesnake (Special Concern)
- Western Ribbonsnake (Endangered)

<section-header>

Urban Ecology

- Urban spaces are ecologically relevant, but more precarious (Grimm et al., 2008)
- Restored natural spaces become "islands" in a sea of human infrastructure (Macarthur and Wilson, 2001)
- This is especially true for slow-moving terrestrial animals like reptiles and amphibians
- Restored sites not only important for snakes, but snakes are also important to the ecology of restored sites

Urban Environments are Perilous for Snakes

- Roads
- Pollutants
- Human hostility
- Domestic/feral animals
- Limited mobility and high mortality

(Andrews and Gibbons, 2005; Cassel et al., 2019)

Urban Environments are Perilous for Snakes

- Roads,
- Pollutants
- Human hostility
- Domestic/feral animals

Limited mobility and high mortality (Andrews and Gibbons, 2005: Cassel et al., 2019)

Photo © A.B. Sheldon

Plains Garter Snake

Confirmed at County Level

Urban Environments are Perilous for Snakes

- Roads,
- Pollutants
- Human hostility
- Domestic/feral animals

Limited mobility and high mortality (Andrews and Gibbons, 2005: Cassel et al., 2019)

Can snake recolonization of a restored urban site be expected?

Photo © A.B. Sheldon

Plains Garter Snake

Confirmed at County Level

Study Purpose

• Provide baseline data about snake communities in Madison-area prairie restorations • Assess whether different, nearby sites varied in species richness

Photo © A.B. Sheldon

Plains Garter Snake

Confirmed at County Level

Methods

- sites
- 3'x4'x3/4" plywood boards, and smaller corrugated metal boards
- Each board checked 10 times between 06/21-10/21
- Time and weather standardized: 4 to 10pm, not when raining

• Identical 5x2 board arrays at 8 different prairie

Methods

Prairie Approximate Size 1. Biocore Prairie ~ a. 12 acres 2. Greene Prairie ~ a.20 acres 3. Lake Farm County Park ~ a.11 acres 4. Overlook Prairie ~ a.**2.5 acres** 5. Owen Conservation Park ~ a.30 acres 6. Pheasant Branch Conservancy ~ 125 acres 7. Prairie Ridge Conservation Park ~ 48 acres 8. Turville Point Conservation Park ~ 4 acres

DCP

Will Vuyk 05/17/22

m.

Figure 1: Site locations and board array configurations

= location of 5x2 cover board array

(50x250ft)

ARB = UW Madison Arboretum DCP = Dane County Parks MP = City of Madison Parks

LNP = UW Madison Lakeshore Nature Preserve

Biocore Prairie (LNP)

(MP)

Greene Prairie

(ARB)

Imagery Date: 6/13/2020 43°09'48.22" N 89°35'43.39" W elev 0 m eye alt 24.57 km 🔘

Expected Results

21 snake species in Wisconsin10 expected species in Dane County

- Blue Racer
- Common Garter Snake
- Dekay's Brown Snake
- Eastern Fox Snake
- Eastern Hog-nosed Snake
- Eastern Milk Snake
- Gopher Snake
- Northern Water Snake
- Plains Garter Snake
- Red-bellied snake

Expected Results

22 snake species in Wisconsin 10 species I expected to possibly find in Madison

- Blue Racer
- Common Garter Snake
- Dekay's Brown Snake
- Eastern Fox Snake
- Eastern Hog-nosed Snake
- Eastern Milk Snake 🔶
- Gopher Snake
- Northern Water Snake
- Plains Garter Snake 🔍
- Red-bellied snake

5 Species Encountered
Common Garter Snake
Dekay's Brown Snake
Eastern Milk Snake
Plains Garter Snake
Red-bellied snake

Common Garter Snake

Plains Garter Snake

Dekay's Brown Snake

Red-bellied Snake

Eastern Milk Snake

Results

140 Snake Encounters5 different species

Dan
City

UW Madison Dane County Parks City of Madison Parks

Takeaways

- Differences between sites
- Effectiveness of cover boards (species specific)
- Plains Garter Snake

Site

Biocore Prairie (Lakeshore Nature Preserve)

Greene and Overlook Prairies (Arboretum)

Lake Farm County Park

Owen Conservation Park

Pheasant Branch Conservancy

Prairie Ridge Conservation Park

Turville Point Conservation Park

Previously reported (iNaturalist, HerpMapper)

None

Dekay's Brown Snake Red-Bellied Snake Common Garter Snake Northern Water Snake

Common Garter Snake Dekay's Brown Snake

None

Dekay's Brown Snake Red-Bellied Snake Common Garter Snake Eastern Milk Snake

None

None

Results

140 Snake Encounters5 different species

UW Madison Dane County Parks City of Madison Parks

 \bullet

Takeaways

- Differences between sites
- Effectiveness of cover boards (species specific)
- Plains Garter Snake

Site	Previously reported HerpMapp
Biocore Prairie (Lakeshore Nature Preserve)	None
Greene and Overlook Prairies (Arboretum)	Dekay's Brown Red-Bellied S Common Garte Northern Water
Lake Farm County Park	Common Garte Dekay's Brown
Owen Conservation Park	None
Pheasant Branch Conservancy	Dekay's Brown Red-Bellied S Common Garte Eastern Milk
Prairie Ridge Conservation Park	None
Turville Point Conservation Park	None

d (iNaturalist, oper)	My Cover Board Data
2	None
vn Snake I Snake ter Snake er Snake	Dekay's Brown Snake Red-Bellied Snake Common Garter Snake
ter Snake ⁄n Snake	Common Garter Snake
2	Dekay's Brown Snake
vn Snake I Snake ter Snake K Snake	Dekay's Brown Snake Common Garter Snake Eastern Milk Snake
	Dekay's Brown Snake Plains Garter Snake
2	Dekay's Brown Snake Common Garter Snake

Results

140 Snake Encounters5 different species

Common Garter Snake
 Dekay's Brown Snake
 Eastern Milk Snake
 Plains Garter Snake
 Red-bellied Snake

Points of interest

- Differences between sites
- Biocore Prairie
- Plains Garter Snake

Species of special concern in Wisconsin

Plains Garter Snake Prairie Ridge Conservation Park

What explains Differences in Species Occupancy?

Landscape-scale factors found to correlate with snake species occupancy (Cagle, 2008; Cassel et al., 2019)

Used WI DNR's Community Tree Canopy Raster Data to Investigate

No occupancy models (Unmarked, R) were significant

Snake Body Condition

Possible case of Snake Fungal Disease (SFD)

Emerging disease in North American Snakes

Importance for Management

- Snakes play a significant role in native grassland ecosystems
- Prey on and are prey for a wide range of invertebrates, amphibians, mammals, and birds (Seigel et al., 2001)
- Slow metabolism, fasting capability allow for greater population sizes than predators of comparable trophic level.

Importance for Management

- Snakes play a significant role in native grassland ecosystems
- Prey on and are prey for a wide range of invertebrates, amphibians, mammals, and birds (Seigel et al., 2001)
- Slow metabolism, fasting capability allow for greater population sizes than predators of comparable trophic level.

Metabolic Rate (20-30°C)

Importance for Management

- Small snakes can exist at high population densities
- Have been found to feed on invasive species, like *Amynthas* jumping worms

Biol Invasions https://doi.org/10.1007/s10530-022-02781-y

ORIGINAL PAPER

Effects of invasive jumping worms (*Amynthas* spp.) on microhabitat and trophic interactions of native herpetofauna

Erin R. Crone^(D) · Erin L. Sauer · Bradley M. Herrick · David Drake · Daniel L. Preston

(Crone et al., 2022)

Received: 13 May 2021 / Accepted: 11 March 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Conclusion

Snakes are often overlooked, understudied, and undervalued in urban prairie restorations

I hope this baseline Madison-area data can help educate needed future investigations

Many Thanks! Project Funded by the Holstrom Environmental Research Fellowship Advisor: Professor Catherine Woodward

- Thanks to other advisors:
- Seth McGee (Professor)
- Dr. Gary Casper (Herpetologist)

- Robert Hay (Herpetologist)
- Nicholas Keuler (Statistician)

Land Managers and Project Facilitators

- Adam Gundlach
- Bradley Herrick
- Lars Higdon
- Paul Quinlan
- Rob Schubert

Laura Wyatt

And other help! Andrea Blattner Erin Crone Savannah Gentry Elizabeth Hucker Leta Landucci Chuck and Helen Maulbetsch Amy Vuyk Nathan Vuyk Friends of Owen Park

Questions?

Bibliography

Aleksiuk, M. 1971. Temperature-Dependent Shifts in the Metabolism of a Cool Temperate Reptile. Comparative Biochemistry and Physiology Part A: Physiology 39: 495–503.

Andrews, K. M., and J. W. Gibbons. 2005. How do highways influence snake movement? Behavioral responses to roads and vehicles. Copeia 2005: 772–782.

Cagle, N. L. 2008. Snake species distributions and temperate grasslands: A case study from the American tallgrass prairie. Biological Conservation 141: 744–755.

Cassel, K. W., J. P. Vanek, G. A. Glowacki, T. S. Preuss, and C. K. Nielsen. 2019. Multiscale Habitat Factors Influence the Occupancy and Trunover of the Suburban Herpetofauna of Chicago, Illinois, USA. Herpetological Conservation and Biology 14: 438–454.

Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Böhm, M., Brooks, T. M., Hedges, S. B., Hilton-Taylor, C., Hoffmann, M., Jenkins, R. K. B., Tognelli, M. F., Alexander, G. J., Allison, A., Ananjeva, N. B., Auliya, M., Avila, L. J., Chapple, D. G., ... Xie, Y. (2022). A global reptile assessment highlights shared conservation needs of tetrapods. Nature. https://doi.org/10.1038/s41586-022-04664-7

Crone, E., Sauer, E., Herrick, B., Drake, D., & Preston, D. (2022). Effects of invasive jumping worms (Amynthas spp.) on microhabitat and trophic interactions of native herpetofauna. Biological Invasions, 1–14. https://doi.org/10.1007/s10530-022-02781-y

Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs. 2008. Global change and the ecology of cities. Science 319: 756–760.

HerpMapper. 2021. HerpMapper - A Global Herp Atlas and Data Hub. Iowa, U.S.A. Available http://www.herpmapper.org. (Accessed: 15-11-2021).

iNaturalist. Available from https://www.inaturalist.org. Accessed 5/17/22.

MacArthur, R. H., & Wilson, E. O. (2001). The theory of island biogeography. Princeton University Press.

Platt, W. J. (1974). Metabolic Rates of Short-Tailed Shrews. Physiological Zoology, 47(2), 75–90. http://www.jstor.org/stable/30155625

Seigel, R. A., Collins, J. T., & Novak, S. S. (Eds.). (2001). Snakes: Ecology and evolutionary biology. Blackburn Press.

Snakes of Wisconsin. (n.d.). Retrieved May 17, 2022, from https://dnr.wi.gov/topic/WildlifeHabitat/herps.asp?mode=table&group=Snakes

Wagner, D. N., P. M. Mineo, C. Sgueo, M. Wikelski, and P. J. Schaeffer. 2013. Does low daily energy expenditure drive low metabolic capacity in the tropical robin, Turdus grayi? Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 183: 833–841.