

Can Traditionally-Sized Green Infrastructure be Used for Flood Control?

Caroline Burger, PE, ENV SP WEFTEC 2021

Presentation Outline

- Purpose
- Analysis Location
- Watershed Study Model Overview
- Phase I
- Phase II
- Grey Infrastructure Reduction
- Cost Estimates
- GI Pilot Study with USGS
- Conclusions and Next Steps

Purpose

- Understand if traditionally-sized green infrastructure can be used to meet flood control targets
- Targets include:
 - No surcharging onto the street during the 10% Chance (10-yr) event
 - Maximum of 0.5' on the centerline of the road during the 4% Chance (25-yr) event
 - No structure flooding during the 1% Chance (100-yr) event

Project Location

Watershed Study Model Overview

- 1D/2D Computer Modeling Software
 - XP-SWMM or PC-SWMM
 - Pipes and some channels/ponds modeled in 1D
 - Surface overflow, channels/ponds modeled in 2D
- Watersheds ranging from 500 acres to 15,000 acres
- SWMM Hydrology
- Subcatchments Separated Into:
 - Directly Connected Impervious Area (DCIA)
 - Non-Directly Connected Impervious Area (NDCIA)
 - Pervious Area
- Models constructed for purposes of flood analysis aka large storms

Pheasant Branch Watershed Study Model

- Ear 🍓 💑 💽 📴 Raf San 🚧 🍃 🗭 📰 🔊 📐 😤 🔝 🔐 🖉

X=770941.65 Y=472903

100 year

ltem	Quantity	
Watershed Area (acres)	3,300	
Number of Subcatchments (#)	451	Window Help
Public Stormwater Inlets and Access Structures in Watershed (#)	2,500	ano - Edit
Total storm sewer pipes in Watershed (#)	2,200 segments; 31.4 miles	
Storm sewer pipes in Model (#; length)	1,452 segments; 27.4 miles	
Open channels in Model (#; length)	90 segments; 6.7 miles	
Detention Ponds in Model (#)	44	
where the	I lagonds Grd Layers I D Rood Maps 20 Reakts I D Rood Maps 20 Reakts I D Rood Maps 9 Thes Sense Outputs I D Rood Maps 9 Read I D Rood Maps 9 Read	

Watershed Study **Inundation Mapping**

1% Chance (100-yr) Inundation Mapping **Existing Conditions**

Greenway

Pond

Parks

Legend

wefte

>Purpose: How much flood reduction does traditionally-sized GI provide?

➤Traditionally-sized means:

Sized for small storm events (100% Chance/1-yr Event)

Treating Directly Connected Impervious Area (DCIA)

≻GI assumed to be:

≻2 feet deep

➤1 foot filled with engineered soil with porosity of 0.3

➤3-foot buffer to grade into existing grades

≻No underdrain

>Native soil seepage rate of 0.3 in/hr (Madison generally has silty soils)

>Area based on needs for treatment

- Evaluated peak flow reduction from treating 10%, 15%, 20%, 25% DCIA
- As expected, peak flow reduction goes down as the storm event size increases
- 1% chance peak flow reduction ranges from 4% to 10.5%

Chose 25% DCIA Scenario to do further analysis

- >Opportunities analysis revealed pervious land available to treat 25% DCIA
- ► Equates to 0.5 inch of runoff
 - Goal Milwaukee Metropolitan Sewerage District is using for its green infrastructure plan

Generally represents "first flush" of stormwater runoff

>Would result in approximately 380 lbs of Total Phosphorus (TP) reduction annually

(City's MS4 Permit Goal is 18,000 lbs TP reduction annually)

≻Need total of 45 acres of area to install GI

➤Using the unit cost from the City of Madison Pilot Study:

Estimated constructed cost: \$78,400,000

Estimated annual maintenance cost: \$5,900,000

- Similar analysis conducted in two watersheds by consultants
 - Willow Creek
 - Wingra West
- Analyses found similar levels of peak flow reductions

Purpose: How much traditionally-sized GI does it take to achieve the flood control targets?

➤Targets not Met in Pheasant Branch Watershed

- ≻10% chance event
 - 9.9 out of 52.1 lane-miles of streets (19%)
- ≻4% chance event
 - 13.1 out of 52.1 lane-miles of streets (25%)
- ≻1% chance event
 - 118 out of 2,920 structures (4%)
 - 14 out of 14 greenway crossings (100%)

► Increased % DCIA Treatment to 75% and 100%

Progress towards meeting targets:

	Street Seg	Street Segments (miles) 10-year Storm Event 52.1			Structures (#) 100-year Storm Event 2,920		
Total							
Scenario	Flooded	Percent	Removed	Flooded	Percent	Removed	
Existing Conditions	9.9	19%	N/A	118	4%	N/A	
Grey Infrastructure							
Proposed Conditions	1.0	2%	8.9	57	2%	61	
Green Infrastructure							
25% DCIA	8.7	17%	1.1	109	4%	9	
75% DCIA	5.8	11%	4.1	79	3%	39	
100% DCIA	2.3	4%	7.5	51	2%	67	
Both Green and Grey	0.5	1%	9.3	15	1%	103	

- Opportunities Analysis
 - Do we have the land available to install the GI?
- GIS Exercise
 - Areas removed:
 - Airports
 - Primary building footprints with a 10 foot buffer
 - Accessory building footprints
 - Buffer of 3 feet along parcel boundaries
 - Cemeteries
 - Depth to bedrock < 5'</p>
 - Depth to groundwater < 5'</p>
 - Hydrologic soil group D
 - Open water
 - Landfills

- Railroads
- Springs
- Wellhead protection zone
- Wetlands
- Salt routes
- Arterial and collector streets (0 < function class
 < 5)
- Slope > 12 %

- Opportunities Analysis
 - Do we have the land available to install the GI?

where the **water community** com

GIS Exercise

weftec

• Yes, there is enough land area

Pheasant Branch Watershed Area Needed to Treat 75% DCIA

➢Area Treated, Cost, Estimated TP Reduction

Scenario	Total Impervious Area Treated (acres)	Total Treatment Area (ac)	Estimated VCI Construction Cost (\$)	Estimated VCI Maintenance Cost (\$/yr)	Estimated TP Reduction (lbs)
25% DCIA Treated	221.4	28	\$49,000,000	\$3,700,000	382
75% DCIA Treated	664.2	84	\$147,100,000	\$11,000,000	1,141
100% DCIA Treated	885.6	113	\$196,100,000	\$14,700,000	1,528

Install 75% DCIA and downsize proposed grey infrastructure and still meet Proposed Conditions reductions?

> Yes – Can be downsized by 1 size:

➢Circular Pipe – 6-inch diameter reduction

➢Box Culvert − 1-foot by 1-foot reduction

➢ Horizontal Elliptical Pipe − 1 size − i.e. 53"x34" went to 49"x32"

➢Also evaluated 2-size reduction

Did not meet Proposed Conditions reductions

► Results in \$7,000,000 reduction in grey infrastructure costs

Total grey infrastructure costs = \$70,000,000; therefore green and grey = \$210,100,000

GI Pilot Study with USGS

- City of Madison conducting GI Pilot Study with USGS
- Purpose is to understand how much GI is needed to see a measureable reduction in peak flow and runoff volume
- Installed Green Infrastructure in a concentrated area (Wingra Proper Watershed)
 - Pervious pavers
 - Pervious sidewalk panels
 - Infiltration trenches
 - Rain gardens
- USGS will monitor area for 5 years

Slide courtesy of W. Selbg, USGS

Conclusions and Next Steps

- Green Infrastructure is effective at reducing flooding, however, it requires a significant amount
- Next Steps:
 - Do similar analysis for other watershed study areas
 - Get direction on the magnitude of green infrastructure investment to include for flood control

Questions?

