

Where we have been...

Madison Metropolitan Sewerage District

2020 ENERGY MANAGEMENT MASTER PLAN

FINAL | December 2021

Energy Tracking

	2020		2021		2022		2023		2024	
Electric Energy	kWh/ Day	% of Total								
Commercial Service Purchased from MG&E	62,809	69.1%	64,571	73.7%	64,577	72.4%	66,639	73.8%	67,195	72.1%
Wind Power Purchased from MG&E	40	0.0%	40	0.0%	99	0.1%	99	0.1%	98	0.1%
Generated from Digester Gas	18,838	20.7%	15,903	18.2%	16,387	18.4%	15,802	17.5%	18,624	20.0%
Avoided Purchase Due to Blower Gas Engine	9,185	10.1%	7,060	8.1%	8,076	9.1%	7,722	8.6%	7,264	7.8%
Total Used & Avoided	90,873		87,574		89,139		90,262		93,180	
Average cost of purchased power (\$/kWh)	\$ 0.0881		\$ 0.0873		\$ 0.0981		\$ 0.1085		\$0.1109	
Estimated total monthly value of energy used	\$244,135		\$232,468		\$266,084		\$297,757		\$314,239	
Estimated monthly value of renewable energy	\$75,396	30.9%	\$61,062	26.3%	\$73,319	27.6%	\$77,928	26.2%	\$87,632	27.9%

Energy Tracking

	2020		2021		2022		2023		2024	
Thermal Energy	therms/	% of								
	Day	Total								
Generated from Natural Gas	757	30.2%	584	25.4%	587	24.1%	360	17.4%	360	16.3%
Generated from Digester	201	8.0%	387	16.8%	440	18.1%	350	17.0%	357	16.2%
Gas										
Recovered from Gas Engines	1,545	61.7%	1,332	57.9%	1,407	57.8%	1,353	65.6%	1,487	67.5%
Total hot water energy used	2,503		2,303		2,434		2,063		2,204	
Average cost of purchased	\$ 0.3591		\$ 0.5451		\$ 0.8372		\$ 0.6940		\$0.5854	
gas (\$/therm)										
Estimated total monthly	\$36,552		\$50,914		\$82,642		\$58,062		\$52,311	
value of gas used*										
Estimated monthly value of	\$25,498	69.8%	\$37,999	74.6%	\$62,714	75.9%	\$47,942	82.6%	\$43,775	83.7%
renewable energy										
	2020		2021		2022		2023		2024	
Total Energy Use	\$ per	% of								
	Month	Total								
Total Estimated Value of	\$280,687		\$283,382		\$348,726		\$355,819		\$366,550	
Energy Used										
Estimated Value of	\$100,893	35.9%	\$99,060	35.0%	\$136,034	39.0%	\$125,870	35.4%	\$131,407	35.8%
Renewable Energy Used										

Avg Home = 1.5 therms/day

District = 4,500 therms/day

Conversion of natural gas to heat is assumed to be 75% efficient and heat recovered from the gas engines is assumed to be 40%.
 Note – due to rounding, numbers may not add exactly.

Why this project is important

This project replaces aging and deteriorated equipment critical to the District's W4 system, which allows the utility to use treated effluent for various non-potable plant processes. This system allows the District to avoid approximately \$2 million in city water costs annually.

Additional facts

- W4 water, which is disinfected and strained effluent, is utilized in various ways across the plant, including as wash water, sludge storage tank cooling, and in some toilets.
- This system saves approximately 300 million gallons of potable water annually.
- Two chlorination systems, installed in 2006 and 2014, will be consolidated into a single system.

Phase	Timing	Estimated Cost (2025 CIP)
Design/ Permitting	Bid: Late 2025	\$1.5 million

Liquid Processing Improvements Phase 2

Flow & Loadings 2050

- Population from 408K (2020) to 558K (2050).
- Annual ave flows (MGD) from 42.8 (2022) to 57 (2050)
- Annual ave loadings to the right. Addressing loadings is the crux of this project.

Figure 3-1. NSWWTP population projections

Figure 3-3. NSWWTP historical and future projected annual average loadings

Liquid Processing Improvements Phase 2

Major components/recap major decisions

- BNR system selected is hybrid –low or high DO
- High-speed turbo blowers + silicone tube diffusers
- Process controls, instrumentation + equipment
- Replace some aeration piping + add interconnection between East and West plants
- Associated Electrical + HVAC upgrades
- Replace East primary influent aeration with pulsed air mixing
- Dedicated smaller blowers for headworks channel, west primary influent channel & west mixed liquor channels.
- Post-aeration tank
- Refurbish nine east plant primary clarifiers
- Asset replacement
- No additional primary tank and no 5th plant required

Liquid Processing Improvements Phase 2

Energy efficiencies

- Overall savings due to change to hybrid BNR system :
 - Energy usage reduced (~18%) when running in low DO
 - Or (~7-11%) if operational switch to high DO
- Blower Selection:
 - High Speed turbo blowers more efficient than single stage geared
- Blower Configuration
 - Cross-connection of blowers more efficient
 - Separate low pressure blowers for headworks, east and west primary influent channels and west mixed liquor channel more efficient than supplying air from process blowers
 - East primary influent channel mixing strategy
- Blower control system -will minimize system operating pressure
- Diffuser selection and arrangement
 - Silicon tube diffusers
 - Low energy configuration

Figure 5-3. Example of Tube Membrane Diffusers. (OTT Magnum FLEXSIL)

Introduction

Simplified schematic of the existing heat loop system at the Nine Springs
Wastewater Treatment
Plant

Madison Metropolitan Sewerage District

Project background

- ✓ The 2014 Energy Baseline and Optimization Roadmap study:
 - Focused on how to reduce energy usage
 - Focused on how to improve utilization of digester gas
 - Focused on how to generate more energy
 - Did not focus on assessing the age and condition of existing infrastructure
- ✓ The 2020 Energy Management Master Plan:
 - Identified critical aging infrastructure related to energy utilization
 - Identified multiple pathways for infrastructure replacement
 - Recommended rehabilitation, replacement, or upgrade of the aging assets while reducing energy usage, operational cost and energy-related environmental footprint

Project direction

Use biogas to generate electricity at greater efficiency

Process biogas to renewable natural gas (RNG) to pipeline quality that can be sold to others

Biosolids Overview

MMSD Biosolids Facilities

Examine the costs, benefits, and management difficulties of four disposal strategies:

- 1. Status quo (Liquid B)
- 2. Pursuing liquid Class A
- 3. Pursuing Class A thermo-dried product
- Consider non-land application/disposal

District Property Opportunity

Questions?

Madison Metropolitan
Sewerage District

Madison Metropolitan Sewerage District