

OPTIMIZATION OF ENERGY AND WATER QUALITY COSTS FOR DRINKING WATER UTILITIES

Tara Hawes and Greg Harrington University of Wisconsin-Madison Civil and Environmental Engineering Madison Water Utility

Objectives

- Develop procedure that optimizes pump schedule to minimize energy and energy related costs
- Develop procedure that accounts for water quality costs as part of the optimization
- Develop computer application that utility staff can use to evaluate minimum cost for different operating scenarios

MWU Historical Patterns

MWU Historical Patterns

MWU Energy and Energy Cost Saving Strategies

Reduced Energy

- Lowest Energy Well
- Optimal Flow Rate

Reduced Energy Costs

- Complete Off-Peak
- Partial Off-Peak

Drinking Water Utilities Objectives

			UI Figure								
Optimization Opti	ions		Results								
Zone	Z ana Q =	Require Volume from other Zone	Daily Schedule	Estimations							
	Zone 3 V	• Yes									
	Zone	⊖ No			Zona	Zana	60				
	Online	Transfer Method	Off-Peak Hours								
	Offline	Booster Station									
		Pressure Beducing Valve	Parameter	7	8	11	13	29	109	115lo	
Demand (MGD) 1.15			DW Volume (MGD)) 1.2800	0.7600	1.4800	1.1700	0.4100	0	0	
		Percent (%) 20 to 35	DW Flow Rate (gpr	m) 1640	1900	2140	1500	800	0	0	
			DW Run Time (hr)	13	6.6300	11.5400	13	8.4800	0	0	
		From Zone Zone 6e ▼	BP Volume (MGD)	1.2800	0.7600	1.4800	1.1700	0.4100	0	0	
			BP Flow Rate (gpm	n) 1750	1040	1900	1500	1100	0	0	
		From BS 115hi 🔹	BP Run Time (hr)	12.1500	12.1600	13	13	6.1600	0	0	
			On-Peak Hours								
UW 25	▼	BS 115hi ▼	Parameter	7	8	11	13	29	109	115lo	
JW Time-of-Day BS Time-of-Day			DW Volume (MGD)) 0	0	0	0	0	0	0	
Online Online Zone Fi			DW Flow Rate (gpr	m) 0	0	0	0	0	0	0	
		Zone Fill Zone 6e ▼	DW Run Time (hr)	0	0	0	0	0	0	0	
Offline	On-Pea	On-Peak Only Off-Peak Only Zone Empty Zone 3 ▼		0	0	0	0	0	0.5400	0.9600	
	Off-Pea			n) 0	0	0	0	0	1070	2400	
			BP Run Time (hr)	0	0	0	0	0	8.4600	6.6300	
	Online	Online		Daily							
Optimization Option			Parameter	7	8	11	13	29	109	115lo	
Energy Costs Only			Volume Pumped (N	/IG 1.2800	0.7600	1.4800	1.1700	0.4100	0.5400	0.9600	
Operational Costs (Energy and Elushing)			Energy Intensity (k	W 2010	1820	1860	1510	1970	220	260	
			Cost Intensity (\$/M	G) 139	110	128	103	130	26	34	
O Total Costs (E)	Energy, Flushing, and	d Health)									
O Energy Cons	umption										
Month May	· •	Run									
Save Setup	Edit Zone Info	ormation Refresh Status									

Energy Optimization

Simulated Year 2019

Energy Optimization

Energy & Water Quality

Cost Optimization

Summary

- Off-peak pumping strategies can be used to save MWU's east side:
 - Approximately 30-35% energy related costs
 - Approximately 3-4% energy consumption

• Computer program is usable by staff and allows for flexible input parameters to optimize pumping schedule

Thank You!

Madison Water Utility