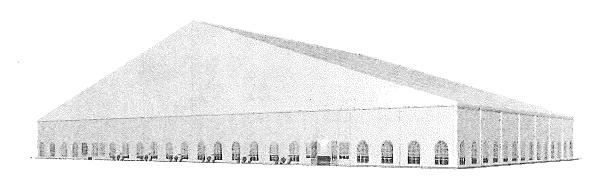
McGINNIS & ASSOCIATES


Structural Engineers 1110 Westmark Drive St. Louis, Missouri 63131 (314) 835-1224 Fax: (314) 984-0561 JOB: Anchor 334 F Series

30/40/50m Aluminum Tent NO. _19252

SHEET NO. 1 OF 231

CALC. BY: <u>DWM</u> DATE: <u>7/29/2011</u>

Structural Calculations for: Anchor Industries 334 F Series Aluminum Tent

Contents Pag	e No.
Design Summary	2
Engineering Summaries	3-8
30mx4m Typ. Interior Frame Design	6-36
30mx5m Typ. Interior Frame Design	37-64
40mx4m Typ. Interior Frame Design	65-98
40mx5m Typ. Interior Frame Design	99-132
50mx4m Typ. Interior Frame Design	133-166
50mx5m Typ. Interior Frame Design	167-200
Eave Strut Design (120/120)	201
Eave Strut Connection	202
Ridge Strut (80/80)	203
Ridge Strut Connection	204
Eave & Ridge Purlin Design (120/80)	205-206
Intermediate Purlin Design (60/60)	207-208
26mm Diameter Cable Tie	209
Gable End Frame & Cable Design	210
285/124 Profile Gable Member Design	211-212
252/122 Profile Gable Member Design	213-216
201/121 Profile Gable Member Design	217-219
30m Wide Cable Bracing Design	220-221
30m Wide Reactions Due to Wind	222
40m Wide Cable Bracing Design	223-224
40m Wide Reactions Due to Wind	225
50m Wide Cable Bracing Design	226-227
50m Wide Reactions Due to Wind	228
Cable Bracing Design	229
Base Plate Design	230
Typical Frame Reaction Summary	231

McGINNIS & ASSOCIATES

Structural Engineers 1110 Westmark Drive St. Louis, Missouri 63131 (314) 835-1224 Fax: (314) 984-0561 JOB: Anchor 334 F Series

30/40/50m Aluminum Tent NO. 19252

SHEET NO. 2 OF 231

CALC. BY: <u>DWM</u> DATE: <u>7/29/2011</u>

Design Summary:

The design of this tent structure is based upon the *Minimum Design Loads for Buildings and Other Structures* (ASCE 7-05). The Occupancy Category according to Table 1-1 of the ASCE 7-05 is I - Certain Temporary Facilities / Minor Storage Facilities.

The tent resists gravity and transverse lateral loads through a rigid frame. The vertical posts are considered pinned at the base with moment connections at the eave and ridge. The rigid frame consists of vertical column members and sloped beam members.

The tent resists longitudinal lateral loads through a cross bracing system. The gable ends transfer the longitudinal load through bending into the cross bracing cables at the top and baseplates at the base.

Load combinations are per ASCE 7-05 Section 2.4 - Combining Nominal Loads Using Allowable Stress Design. The load combinations used for design of the rigid frame members include:

D + Lr (Load Case 1)

D + S (Load Case 2) - Controlling Case

D + Wind 1 (Load Case 3)

D + 0.75 Wind 1 + 0.75 Lr (Load Case 4)

D + 0.75 Wind 1 + 0.75 S (Load Case 5)

0.6 D + Wind 1 (Load Case 6) - Controlling Case

D + Wind 2 (Load Case 7)

D + 0.75 Wind 2 + 0.75 Lr (Load Case 8)

D + 0.75 Wind 2 + 0.75 S (Load Case 9)

0.6 D + Wind 2 (Load Case 10)

Wind 1 and Wind 2 refer to the worst case transverse wind loadings. The design of the rigid frame members is controlled by Load Cases 2 & 6.

The load combination that governs the design of the cross bracing is Load Case 3 using longitudinal wind pressures.

The design wind speed, importance factors, exposure categories and snow load data is summarized in the design load summary table.

Design of the aluminum elements is per Aluminum Design Manual 2005 and the design of the steel elements is per AISC 360-05 ASD. For design of minor storage facilities the a 1.3 safety factor has been applied to the yield strength for the design of aluminum members per Section 1.3.3 of the Aluminum Design Manual 2005.

DESIGN LOAD SUMMARY TABLE				
Tent Size	Dead Load	Live Load	Snow Loads	Wind Loads
30x4			Pg=20 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=6.85 psf	90mph, I=0.87, Exp. C
30X5	1.5 PSF 1/4 PO	500 LBS @	Pg=20 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=6.85 psf	90mph, I=0.87, Exp. C
40X4		1/4 POINT	Pg=20 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=6.85 psf	90mph, I=0.87, Exp. C
40X5		500 LBS @	Pg=20 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=6.85 psf	90mph, I=0.87, Exp. C
50X4		MID-PORNT	Pg=15 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=5.14 psf	90mph, I=0.87, Exp. C
50X5			Pg=10 psf, ls=0.8, Cs=0.8, Ce=0.9, Ct=0.85, ps=3.43 psf	90mph, I=0.70, Exp. C