#### Using SCADA and AMI to Identify Areas of Water Loss in Madison Water Utility

**Isabel Reams** 



**Madison Water Utility** 

#### Acknowledgements

Greg Harrington, advisor and committee chair

Joe DeMorett, MWU water supply manager

Chris Wilkins, MWU control systems programmer

Mohan Qin, *committee member* 

Daniel Noguera, committee member



**Madison Water Utility** 

#### Introduction





- 1. Contribute to 100% Renewable Madison by identifying ways to reduce the amount of greenhouse gas emitted for MWU operations.
- 2. Identify the spatial and seasonal dependence of water loss in the distribution system.
- 3. Identify sources of water loss in the distribution system.

#### Water Loss

#### Inputs:

- Well 6
- Well 7
- Well 8
- Well 9
- Etc.



Outputs:

- Customer Use
- Water Main Flushing
- Fire Fighting
- Leaks
- Theft

#### **Madison's History With Water Loss**

- Water use decreasing (despite population growth)
- About 1.1 billion gallons lost a year



#### **Madison's History With Water Loss**

- Percent water loss increasing over time
- About 12% of water lost each year



#### **Fundamental Basis of Water Loss**



$$Q = A * \sqrt{2g(\Delta z)}$$

- Q = flow rate
- A = area of holes
- g = gravitational constant
- $\Delta z = elevation difference$

between reservoir and hole

# **Big Data at Madison Water Utility**

2 data systems – each taking millions of data points a day

Inputs:

- Well 6
- Well 7
- Well 8
- Well 9
- Etc.



Outputs:

- Customer Use
- Water Main Flushing
- Fire Fighting
- Theft
- Leaks

## **Big Data at Madison Water Utility**

2 data systems – each taking millions of data points a day



# Supervisory Control and Data Acquisition (SCADA)

- Control operations remotely
- Collect data at wells, reservoirs, and booster stations:
  - Flow meters
  - Pressure sensors
  - Tank level indicators
  - Etc.

| Tag Picker                 |                                             |
|----------------------------|---------------------------------------------|
| Servers                    |                                             |
| E-13 HISTORIAN2            |                                             |
| Tags                       |                                             |
| Tag Name *                 | Description                                 |
| W16_FL_ACID_USEC           | Well 16 Fluosikic Acid Use Cumulative       |
| W16_RES_LVL                | Well 16 Reservoir Level                     |
| W16_STAT_DISCH_FLW         | Well 16 Station Discharge Flow              |
| W16_STAT_DISCH_FT          | Well 16 Station Discharge Flow Total        |
| W16_STAT_DISCH_FT1         | Well 16 Station Discharge Flow Total Day -1 |
| W16_STAT_DISCH_FT2         | Well 16 Station Discharge Flow Total Day -2 |
| 🔉 Al 🔛 Analog 🗟 Discrete 🕮 | String 3 Analog Summary 2 State Summary     |
| Filter                     |                                             |
| Server: HISTORIAN2         |                                             |
| Tag Name:                  |                                             |
| Description:               |                                             |
| I/O Address:               |                                             |
| Exact match                |                                             |
| Apply Clear                |                                             |

## **Advanced Metering Infrastructure (AMI)**

- Customer flow meters
- Data sent automatically and wirelessly





(EPA, 2023)

#### **Methods Overview**

Inputs:

- Well 6
- Well 7
- Well 8
- Well 9
- Etc.



#### Outputs:

- Customer Use
- Water Main
   Flushing
- Fire Fighting
- Theft
- Leaks

#### Inputs – Authorized Consumption = Water Loss

#### Fate of Water Pumped by MWU in 2022



#### Water Loss in 2022

- 1.23 billion gallons water lost
  - Compare to 1.14 billion gallon average in preceding 26 years
- 13.5% of water lost
- Average of 7 gallons/day for a 10 ft length of water main

#### **Spatial Dependence – Pressure Zones**



- 10 distinct pressure zones
- Hydraulic headdelineated

#### Water Loss in 2022



#### **Seasonal Dependence**

- Most detected failures are in the winter
  - Is most loss in the winter?
  - Is most loss from main and service line breaks?



#### Water Loss in 2022



#### Water Loss vs Water Pumped



#### Water Loss vs Length of Mains



#### Estimated Water Loss Along Water Mains of Different Materials in 2022



#### **Electricity Consumption**



#### **Electricity Consumption from a** Financial Perspective



\$300k

spent on

water loss

#### **Greenhouse Gas Emissions**



# **Sensitivity Analysis**

- Replacing all spun cast iron with ductile iron would reduce water loss to about 8.9%
  - 34% reduction from 2022 water loss
- Class AB Wisconsin Utilities
  - 15% reported less than 5% water loss
  - This would be a 43% reduction for MWU

## Conclusions

- MWU experienced a water loss of 1.23 billion gallons in 2022, 13.5% of the total water pumped
- Water loss was greatest in the winter. Percentage water loss was 16.7% during the winter, about 5% higher than during the summer and fall
- Water loss varied greatly with pressure zone, from 7.3% in zone 6W to 26.4% in zone 4
- Water main materials have an impact on water loss
  - 885,527 gal loss/mile of ductile iron
  - 1,029,082 gal loss/mile of sand cast iron
  - 2,578,480 gal loss/mile of spun cast iron

## Conclusions

- Age of water mains is slightly correlated with water loss because different materials have trended in new construction and water main replacement over the years
- 2.5 GWh of electricity were wasted due to water loss in 2022
  Reduction to 5% water loss would reduce electricity use by 1.6 GWh per year
- 1754 tons of  $CO_2$  were emitted in the generation of the electricity wasted due to water loss in 2022
  - Reduction to 5% water loss would reduce CO2 emissions by 1105 tons of CO2 per year

#### **General Recommendations**

- Continue to prioritize the replacement of spun cast iron water mains, when possible
  - For every mile of spun cast iron replaced with ductile iron pipe, an estimated 1.7 million gallons of water loss will be prevented each year.
- Work with the city's Engineering Division to ensure that water main material is an important factor in prioritizing street replacement



#### **Research Recommendations**

- Conduct a water loss study using well influence zones rather than pressure zones. This could yield greater levels of certainty on water loss as a function of pipe material.
- Implement pressure sensors throughout the water main network. High density pressure sensor networks have been shown to increase sensitivity of main break detection (Lee et al., 2016; Ma et al., 2022).
- Develop computer software to automatically link data from SCADA and AMI for close to real-time analysis of water loss.

# What questions do you have?