
Transit and Sustainability

FIGURE 1

Transportation
Accounts For 29%
of U.S. Greenhouse
Gas Emissions.

Source:

U.S. Environmental Protection Agency, *Inventory* of Greenhouse Gas Emissions and Sinks: 1990-2007, April 2009.

SCENARIO 3

100% Renewable Energy and Zero Net Carbon by 2030

All Scenario 1 & 2 Measures

Efficiency (Demand)

HVAC Retrofits
Plug Load Management Strategies

Building Envelope Improvements

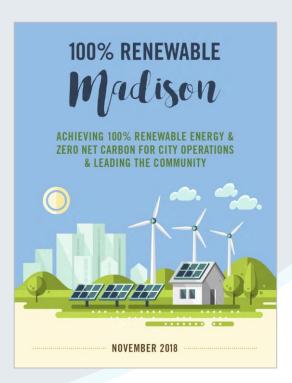
Renewable Generation (Supply)

Behind-the-Meter Solar (Phase 2)

Transportation

100% Electric Buses Mid-Duty EV Procurement Heavy Duty CNG Procurement

Policy


RECs and Carbon Offsets

- •55% carbon reduction with 25% self-generated renewable energy
- •45% RECs and carbon offsets
- •\$95M investment over 13 years; IRR 17%
- •Cost savings to city of \$78M by 2030
- •Reduce total carbon emissions by 426,000 tons by 2030
- Societal co-benefits range from \$21M - \$162M by 2030

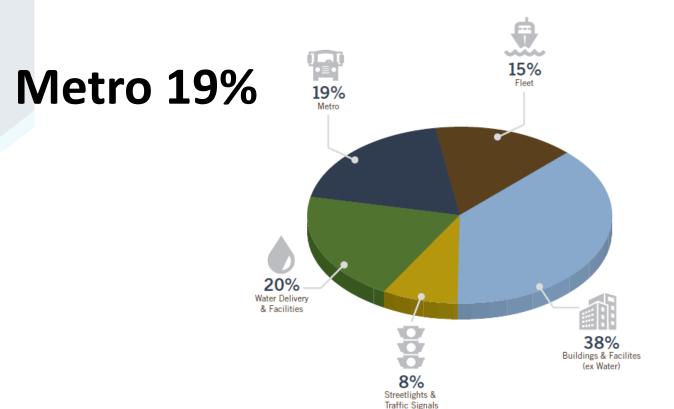

DEPARTMENT OF

FIGURE A-2. BASELINE CARBON EMISSIONS FOR CITY OPERATIONS BY CATEGORY*

^{**}Excludes landfill, city employee commute, and City-owned housing emissions. Source: HGA based on ICLEI

Figure A-3 illustrates baseline carbon emissions for municipal operations by fuel type in 2018, the baseline year for the report, including electricity (57%), diesel (29%), natural gas (9%) and gasoline (5%).

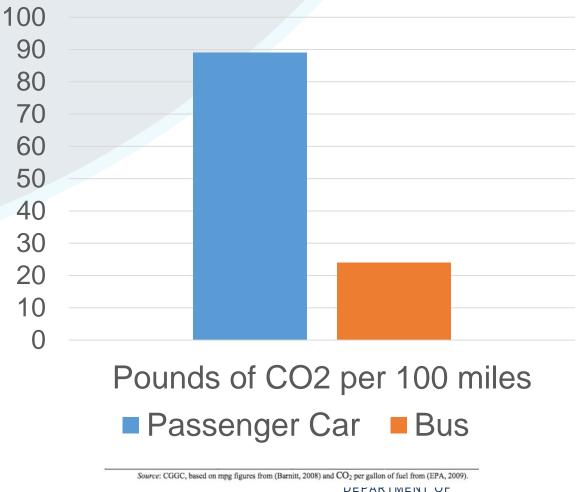
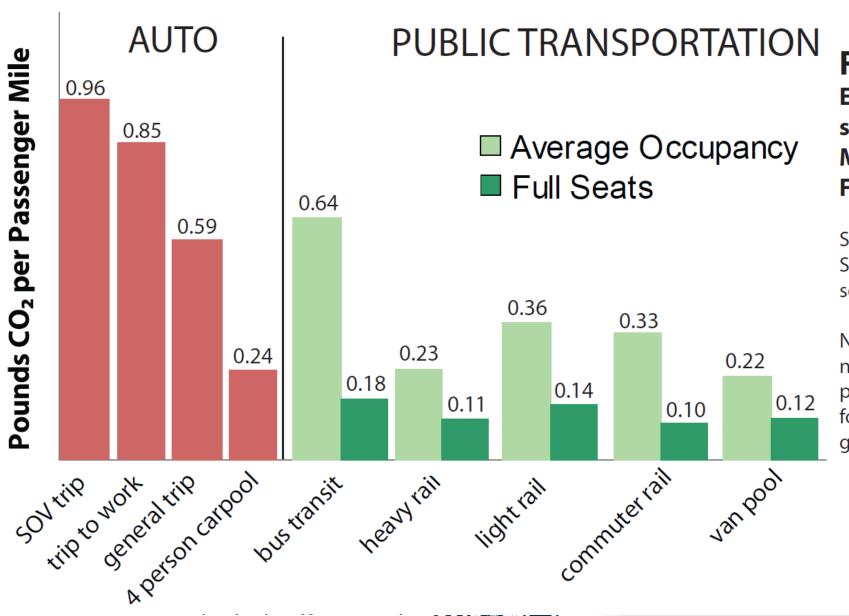


FIGURE 2-14. FUEL MIX SCENARIO 3: 100% RENEWABLE ENERGY AND ZERO NET CARBON BY 2030

	Unit	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
CO ₂ Emissions (Baseline)	ton	81,141	81,699	82,261	82,829	83,402	83,981	84,565	85,155	85,750	86,351	86,957	87,570	88,188
CO ₂ Reduction (Demand)	ton	1,416	5,640	9,796	13,882	17,900	21,849	22,644	23,531	24,508	25,577	26,736	27,986	29,328
	%	2%	7%	12%	17%	21%	26%	27%	28%	29%	30%	31%	32%	33%
CO ₂ Reduction (Supply)	ton	5,597	7,478	9,136	10,582	11,824	12,871	14,073	15,181	16,191	17,099	17,902	18,594	19,171
	%	7%	9%	11%	13%	14%	15%	17%	18%	19%	20%	21%	21%	22%
CO ₂ Remaining	ton	74,128	68,581	63,329	58,365	53,679	49,261	47,848	46,443	45,051	43,675	42,319	40,989	39,689
	%	91%	84%	77%	70%	64%	59%	57%	55%	53%	51%	49%	47%	45%
RECs Electricity	ton	39,337	36,869	34,698	32,813	31,206	29,866	30,513	31,166	31,831	32,513	33,214	33,939	34,694
	%	48%	45%	42%	40%	37%	36%	36%	37%	37%	38%	38%	39%	39%
RECs Natural Gas	ton	6,774	6,310	5,847	5,384	4,922	4,461	4,533	4,607	4,681	4,756	4,832	4,908	4,985
	%	8%	8%	7%	7%	6%	5%	5%	5%	5%	6%	6%	6%	6%
RECs Gasoline	ton	5,145	4,675	4,204	3,734	3,263	2,792	2,395	1,997	1,600	1,202	804	407	0
	%	6%	6%	5%	5%	4%	3%	3%	2%	2%	1%	1%	0%	0%
RECs Diesel	ton	22,872	20,726	18,580	16,434	14,288	12,142	10,407	8,673	6,939	5,204	3,470	1,735	0
	%	28%	25%	23%	20%	17%	14%	12%	10%	8%	6%	4%	2%	0%

Source: Navigant

Metro reducing emissions from the private sector



10,000 new riders per workday reduces CO2 emissions by 6,000 tons/year

40 pass/bus, 3 mile average trip, weekdays only

This reduction would represent 1/3 of Metro's emissions

FIGURE 3 Estimated CO₂ Emissions per Passenger Mile for Average and Full Occupancy

Sources: See Appendix II for data sources and methodology.

Notes: The average number of passengers for private auto trips is 1.14 for work trips and 1.63 for general trips.

Average U.S. Single Occupany Vehicle: 0.964 pounds CO₂/passenger mile

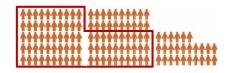
Heavy Rail Systems

State	Heavy Rail Common Name	Pounds CO2 / passenger mile	% of total heavy rail passenger miles traveled in the U.S.	KWH/ seat mile (Efficiency of Vehicle)	Average % of seats full (Ridership)	Pounds CO2/MWH for eGRID subregion (carbon content)
NY	New York City Subway	0.147	59.3%	0.107	59%	815
DC	Washington Metro	0.347	9.7%	0.101	33%	1,139
CA	San Francisco BART	0.085	8.6%	0.069	32%	399*
IL	Chicago "L"	0.573	7.0%	0.133	36%	1,538
GA	Atlanta MARTA	0.245	3.5%	0.064	39%	1,490
MA	Boston "T"	0.336	3.3%	0.167	46%	928
PA	Philadelphia SEPTA	0.374	2.5%	0.151	46%	1,139
NJ	New Jersey PATH	0.302	2.1%	0.249	94%	1,139
CA	Los Angeles Metro	0.282	1.3%	0.248	64%	724
FL	Miami-Dade Transit	0.656	0.8%	0.137	28%	1,319
NJ	New Jersey PATCO	0.519	0.6%	0.128	28%	1,139
MD	Baltimore Metro	0.919	0.4%	0.137	17%	1,139
ОН	Cleveland Rapid	0.805	0.3%	0.168	32%	1,538
NY	Staten Island Railway	0.346	0.3%	0.110	26%	815
National Average Weighted by Passenger Miles		0.224	99.7%	0.109	47%	

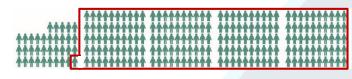

Source: Calculated from Federal Transit Administration 2008 National Transit Database (NTD), U.S. Department of Energy carbon dioxide conversion factors, U.S. Environmental Protection Agency eGRID.

IKANSPUKTATION

SOV Vehicle = 0.96 lbs/carbon/mile


Sustainable Infrastructure

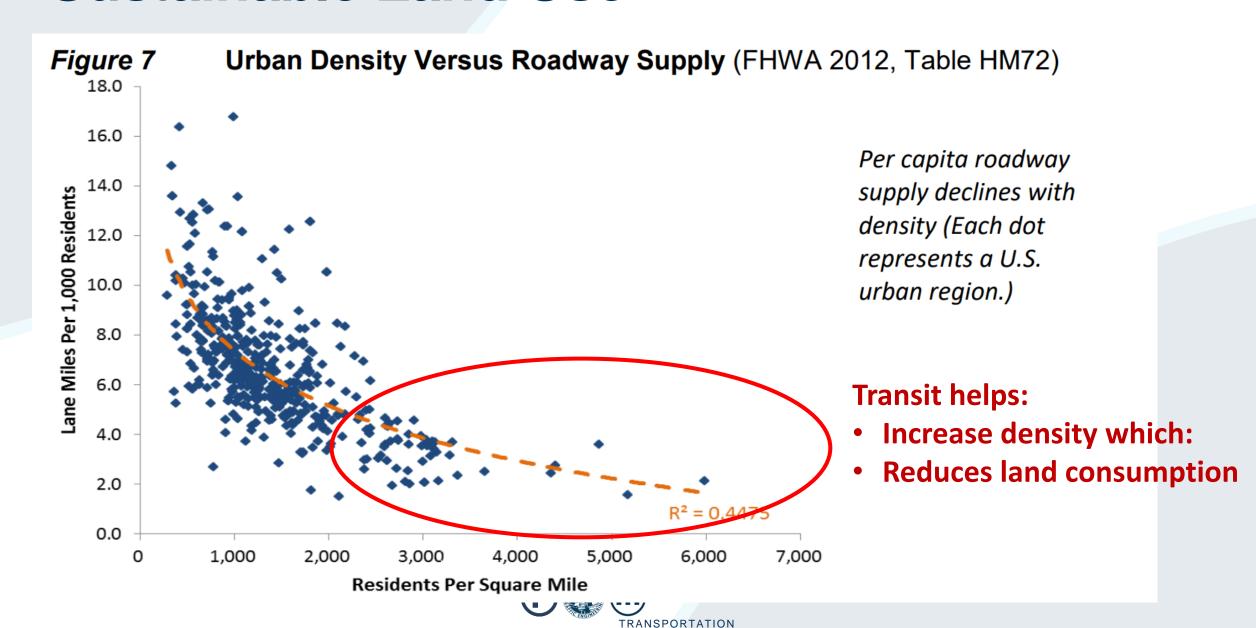
Moving people, not just cars



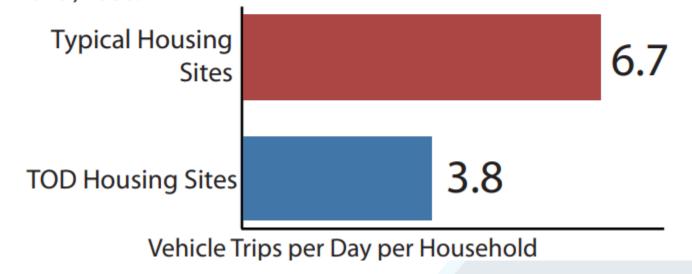
Less required in public infrastructure investment

126 People move through this roadway during each light cycle. **80 in transit.**

235 People on a road with transit-only lanes move through this roadway during each light cycle. 204 in transit.



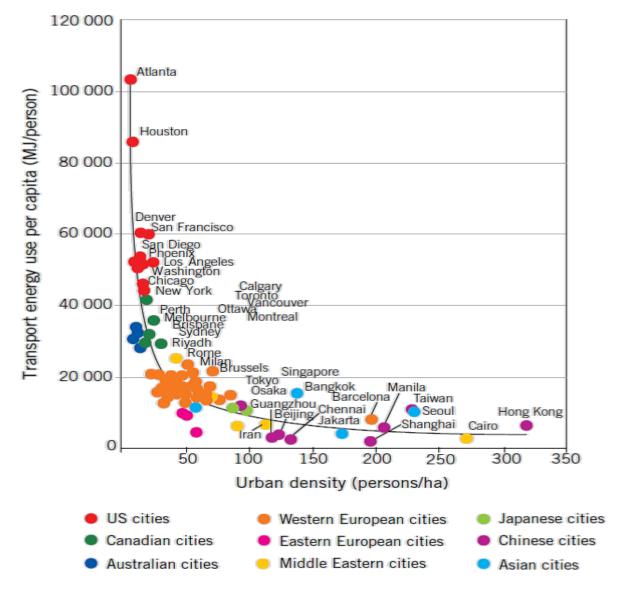
DEPARTMENT OF


Sustainable Land Use

Density and Trips

FIGURE 5 Vehicle Trips per Day of Transit Oriented Development (TOD) Housing Sites versus Typical Housing Sites

Source: TCRP 128: Effects of TOD on Housing, Parking and Travel, 2008.



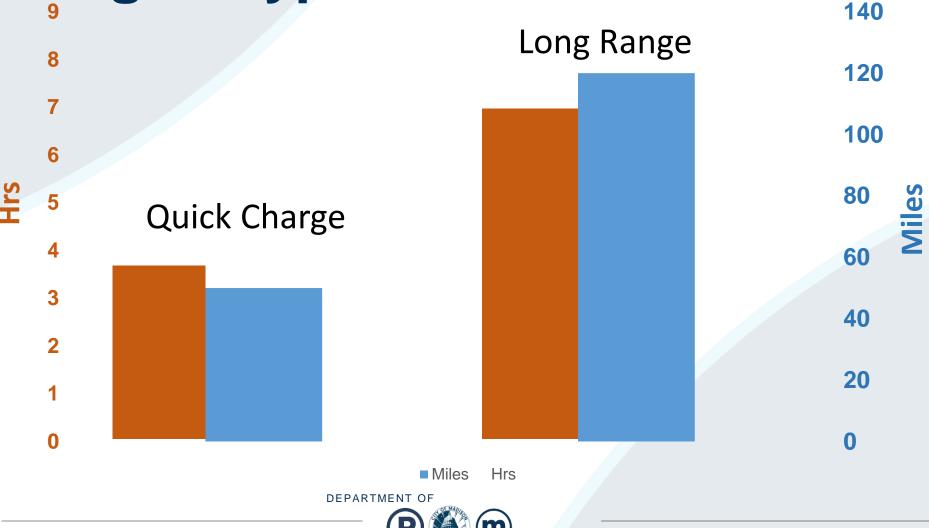
Density and Energy Use

Fig. 4. Urban density and transport-related energy consumption

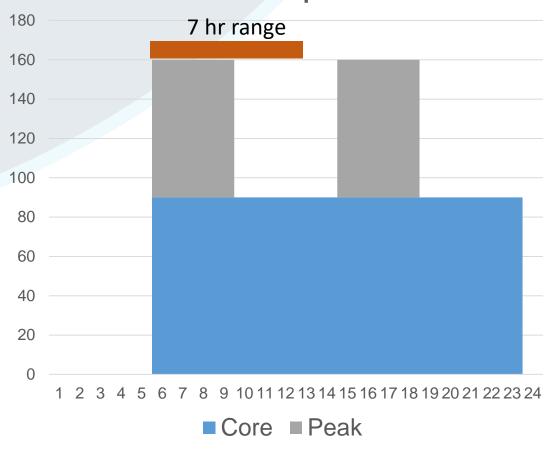
Source: International Association of Public Transport Providers, 200511

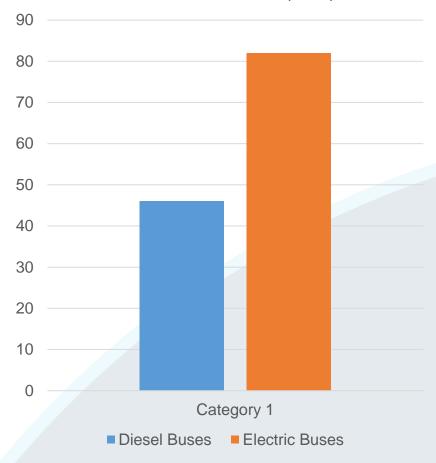
Department of Transportation and Metro is committed to helping to achieve a 100 % renewable future.

But its more than just flipping a switch


Challenges

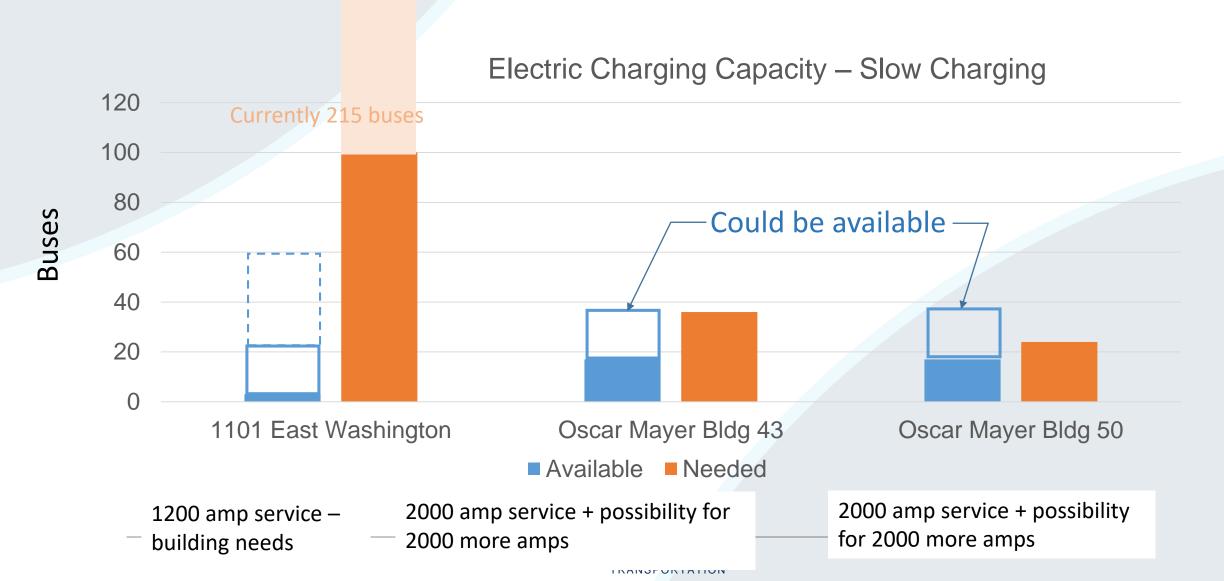
Size


Range – Types of Buses


TRANSPORTATION

Range

Buses in Operation

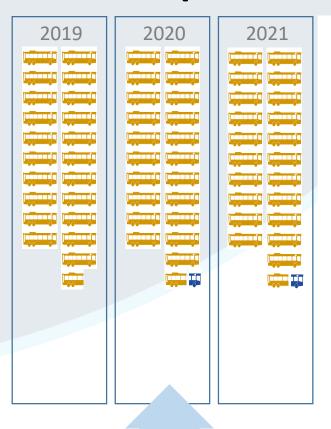

Moscow Routes 73, 76, 80

DEPARTMENT OF

Charging Capacity

Changing Charging Speed

Amps x Volts = Watts


Rapid chargers reduce the number of buses that can be charged at a time.

They hold promise on how Metro blocks routes

Replacement Cycle

Bus Replacement Schedule

EW retrofitted to allow electric buses in building, with capacity to charge 3 buses

3

```
= 10 electric buses ~$0.7M/ea
= 10 diesel buses ~$0.5M/ea
= 10 electric articulated buses ~$1.2M/ea
```

Department of Transportation and Metro is committed to helping to achieve a 100 % renewable future.

We are working on how to flip the switch