FORWARD MADISON: URBAN FOOTPRINT SCENARIO PLANNING

Applicant/Sponsor: City of Madison
Total Project Cost: $\$ 600,000$

Grant Funding: $\$ \mathbf{3 0 0 , 0 0 0}$

Project Description

This TIGER grant will help develop corridor transit-oriented development plans for three station areas to be served by the upcoming Bus Rapid Transit system. While Madison is experiencing economic growth, the growing minority population faces high rates of poverty and unemployment. The plan provides for public outreach and engagement efforts, including an advisory committee, work groups with community participants, and public input sessions to study the impacts of different scenarios on equity, connectivity, congestion, and the environment.

Project Highlights

» Includes high levels of partnership with planning commissions, the metropolitan planning organization, the transit authority, and local advocacy groups.
Builds on work completed through a HUD sustainable communities grant, which used a Fair Housing Assessment to identify barriers to opportunity, including geographic placement of people and employment and transit options.
» Includes a plan to train staff on Urban Footprint, a scenario planning tool that enhances the ability for public engagement and equitable planning, for future utility.

CENTRAL

Project Benefits

The proposed plan will improve access to opportunity by considering land use, transportation, and equity issues. By promoting transit oriented development, the plan, once implemented, is expected to reduce emissions, attract economic investment, and improve quality of life. This plan will also enhance safety by targeting areas with the highest number of crashes for improvements.

Proposed Project Timeline

Table 1. Proposed Project Timeline

Fy2014 Il\|cer Planning Grant timeline	2014	2015	2016
			© लै ले
Current Planning Projects			
Madison Economic Development Master Plan			
Madison Transportation Master Plan			
Bus Repid Ironsil System			
Form BRT Implementation Committee			
Conduct Metro on-board survey			
Implement improvements to the mode choice/transit component of the MPO's regional travel model			
Pre-project development/alternatives analysis			
Metro completes bus storage/maintenance facility plan			
Project Development - NEPA and design			
Develop and approve BRT finance/governance plan			
Secure project funding/construction and service change (Construction slated for 2017-2018)			\square
Develop and Deploy the Urbonfootprint Scenorio Modeling Plofform			
UrbanFootprint System and Base Data development			
Scenario Development Functionality and Customization			
Existing Analytical Engine Calibration/Customization			
Model Transition and Training			
Thee IOD Station Area Master Plans			
City-wide Context Scenarios using UrbanFootprint			
TOD Station area Scenario Development			
TOD Station Area Plan Development, Public Involvement, and Plan Adoption			
Future Plonning Projects			
City of Madison Comprehensive Master Plan			5

The Work Plan for the TIGER funded planning project depicted on the timeline is anticipated to run concurrently with several planning projects that are currently underway including the City-wide Economic Development Plan and the Transportation Master Plan, as well as the City's Comprehensive Master Plan slated to begin in 2016. Consequently, these planning processes can inform one another, and the inputs to, and outputs from, the UrbanFootprint modeling platform can interface and benefit the various planning initiatives. Timing of the TOD Station Area planning and the BRT design and implementation phases is also slated for concurrent implementation in an effort to maximize the opportunity for the city to adopt policies (e.g. affordable housing), which will then strengthen the MPO's application for federal BRT funding under the FTA Small Starts program.

Honolulu Transit Oriented Development Study Scenarios Results

Honolulu TOD Study Scenarios Overview

${ }^{\text {ach }}$ of the scenarios represents a different way of accommodating pro jected housing and job growth on Oahu to approximately the year 2050 . Each includes the same total number of people, homes, and jobs, but varies in where and how they are located on the island. The scenarios also vary in terms of the types of homes that will be built in the coming decades, and the extent to which their mix of housing types meet the demands of Oahu's current and future residents.

This scenario extends the land development and transportation investment choices of the past decades forward to 2050 . It accommodates about 46% of projected housing growth-about 48,ooo homes-within the one-mile transit corridor area,
but does not include the planned Honolulu Rail Transit line (81% does rowth occurs on previously undeveloped land much ofthan ane coridor The housing is multifamily.

This scenario represents the housing and job distribution forecast in official state and city/county projections. It is very close to the distribution used in the rail rid ership forecasting for the federally required environmental impact statement. The Forecast Future sees about 55% of new growth occur on the corridor, accounting for about 58,000 new homes. While the majority of new growth occurs in autocentric patterns and locations, there is somewhat more Mixed-Use Walkable and Urban Infill development in this scenario. Nearly 75% of growth occurs on undeveloped land, and most new housing remains single family detached in this scenario; there is more multifamily development than in Business as Usual.

This scenario takes greatest advantage of the planned rail investment, while also seeking to meet projected housing demand by type. It accommodates about 85% of new homes, about 88,000 units, along the rail corridor, with another 17,000 homes located outside of the corridor. Growth along the corridor is focused in compact, walkable communities that include a range of single and multi-family types, and more than 25% of growth occurs through urban infill and redevelopment. Only about 3% of growth occurs in suburban, auto-oriented patterns. Growth in this scenario is split equally between infill and undeveloped locations,
The housing mix in this scenario aligns with projected housing demand by type he housing mix in this scenario aligns with projected housing demand by type f housing, with new housing constraction focused on single-family attached an ownhome products, multi-family housing, and smaller-lot single family homes.

Percent of New Growth in Rail Corridor

Land Development Category Proportions

Infill / Redeveloped Land vs. Undeveloped Land

Scenario Metrics Summary

The comparative scenario metrics summarized here are described in detail in the following sections. For clarity, values are rounded. All costs are expressed in 2011 dollars.

Fiscal Impacts of Development	Rail Transit Ridership	Household Costs
Capital and ongoing operations and maintenance costs for new local roads, sewer, water, and wastewater infrastructure.	Daily transit boardings on the proposed Honolulu a ail Transit line.	Automobile transportation (fuel, insurance, maintenancel and home energy and water costs.
$\frac{8,6}{5 b_{1}}$	(dö̀s not include rail)	$\frac{\$ 6,950}{\text { (per new housshold, 2050) }}$
\$81,900 (per new household, 2050)		
	Phase 1 Extessions	
$\$ 8.0$	$140,000$	$\$ 14,750$
billion (cumulative to 2050)	$\begin{aligned} & \text { tips } \\ & \text { (daily in 2035) } \end{aligned}$	(per new household, 2050)
\$76,300 (pernew household, 2050)		
	Plase 1 Extensions	
$\$ 7.1$	$160,000$	$\text { s } 9,300$
billion (cumulative to 2050)	$\begin{aligned} & \text { trips } \\ & \text { (daily in 2035) } \end{aligned}$	(pernew household, 2050)
$\$ 68,000$ (per new household, 2050)		

