

UNIVERSITY OF WISCONSIN-MADISON BIRD COLLISSION CORPS + MITIGATION

City of Madison Plan Commission Work Session 0220 | 2020

Bird Collisions & Architecture

A Panel Discussion on the Economics, Ecology, and Design Methods to Reduce Bird Strike Incidence

Friday, April 7, 2017

Signe Skott Cooper Hall Auditorium University of Wisconsin-Madison 701 Highland Avenue

continuing education credits available through:

Stanley Temple - moderator

Professor Emeritus, UW-Madison Forest & Wildlife Ecology Senior Fellow, Aldo Leopold Foundation

Matt Reetz

Executive Director, Madison Audubon www.madisonaudubon.org

Anna Pidgeon

Faculty, UW-Madison Forest & Wildlife Ecology www.forestandwildlifeecology.wisc.edu

Stefan Knust

Director of Sustainability, Ennead Architects

Sponsored by:

UW-Madison Facilities Planning & Management Campus Planning & Landscape Architecture (CPLA) Capital Planning & Development (CPD)

ALA Wisconsin - Southwest Chapter U.S. Green Building Council - Wisconsin Wisconsin Chapter - American Society of Landscape Architects

BIRD COLLISION CORPS

Bird Collision Corps began in Spring 2018 in response to community interest. UW-Madison (Facilities + Academic), Madison Audubon, and Dane County Wildlife Center created a program to examine which buildings on the UW-Madison campus posed greatest risk for bird-window collisions, what landscaping or building factors are associated with those sites, and move to remedy those problem areas, thereby creating a safer environment for birds.

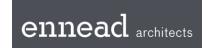
WHY?

- Second Nature Resilience Commitment
- UW-Madison STARS Rating
- Campus Design Guidelines & Standards
- UW-Madison Strategic Framework 2020-2025
- Schools, Colleges, Divisions

ORGANIZATION

#1A

#1B



#2

#3

Joint Campus Area Committee Public Information Meetings Design Review Board

BIRD COLLISION CORPS

12-15 Buildings studied each survey period.

```
Spring Migration Period (April 15 - June 1)
Fall Migration Period (Sept. 16 - Nov. 1)
```

- Each building monitored 5+ days/week.
- Monitor between dawn and 11AM.
- 12' out from each building, accessible roof terraces.
- Volunteer base of approximately 30 individuals.
- Handling protocols & waiver signature.
- Data collated in iNaturalist cross-checked by coordinator.

BIRD COLLISION CORPS

CAMPUS NOTIFICATION

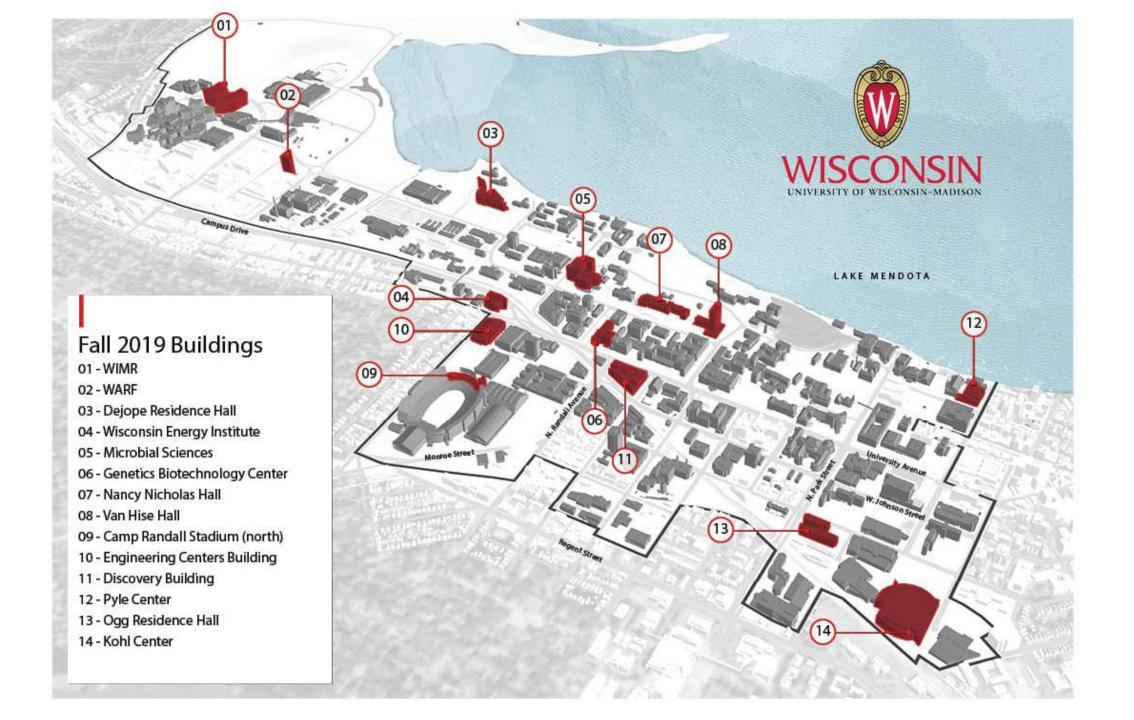
UW Forest & Wildlife Ecology Department

UW Facilities Planning & Management

UW Environmental, Health, & Safety

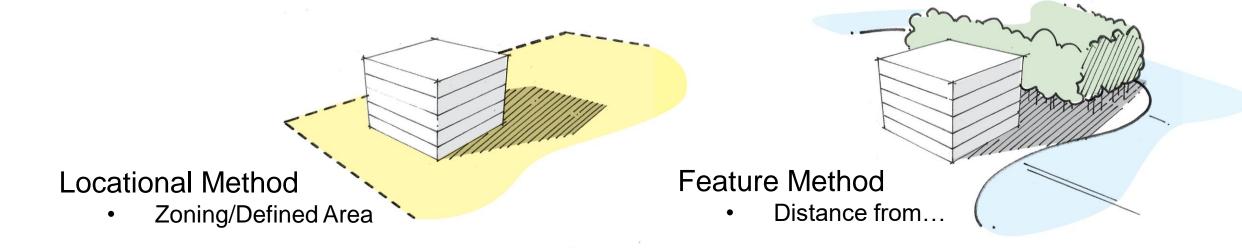
UW Risk Management

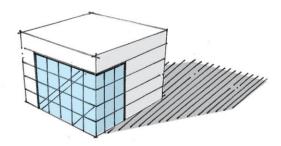
UW University Health Services

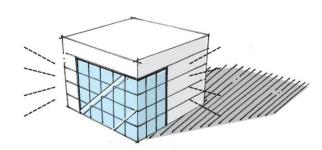

UW Grounds

UW Pest Control

UW Police Department


UW Communications


UW Building Managers for each building



ORDINANCE METHODS

Percent Glass Method

Reflectivity and/or Transparency Method

UW DRAFT RECOMMENDATIONS

- 90% of glass up to 75' from ground = threat factor (TF) less than 25.
- Applies to facades adjacent to green roofs.
 (14' height from green roof)
- All glass awnings and windscreens must also meet TF.
- Reference LEED PC 55 for TF chart.
 (few materials under TF 15 currently exist)
- Prohibit glass areas of non-friendly glass greater than 10'x10'.
 (so 10% isn't loaded in one area).
- Applies to all new construction regardless of size, location, % glass.
 Remodels with façade component over \$3M.
- 1/4" x 1/4" white dot spaced 2" x 2" continuous Surface 1 = TF 15.

THREAT FACTOR - MATERIALS

FAÇADE MATERIAL TYPE	THREAT FACTOR	NOTES
Brick/Wood/Stone	0	Opaque
Clear Glass	100	Single pane or IGU
UV reflective lines/patterns	27	Surface 2
¼" x ¼" Frit, 2" O.C.	25	Surface 2
1/4" x 1/4" Etch, 2" O.C.	15	Surface 1
¼" dia. Adhesive Dots, 2" O.C.	15	Surface 1 – 10 yr. life
Translucent channel glass	10	Surface 1 - Orange peel texture
1/4" thick white stripes at 4"	8	Horizontal or Vertical
Matte 50% perf. white vinyl film	2	Surface 1
Window screens	2	Exterior 2" outboard of glass

· · · · TRANSPARENCY· · · · · · · LIGHTING · · ·

ESTIMATE OF PROBABLE COSTS

MITIGATION vs. NEW CONSTRUCTION

ESTIMATE OF PROBABLE COSTS

BIRD 'VALUE'

- Seed Dispersal, Pollination, Water Purification,
- Food Source, Clothing, Medicines
- Control Pests, Nutrient Cycling
- Recreational Opportunity
- Inspirational/Spiritual Quality (Wellbeing)
- Messengers widespread and respond quickly to change
- Intrinsic Value

ESTIMATE OF PROBABLE COSTS – SORT OF...

- Cannot think of glass independently of building envelope.
- Costs of building glass are very project specific.
- Variables that determine price:
 - Quantity
 - Performance (U-Factor, Heat Gain, Transmittance, Reflectance)
 - Size
 - Location of project, surface of treatment
 - Schedule
 - Color
 - 'Industry'
- Frit, etch, and films will cost more than 'standard' glass (Solarban 70) without those features.
- Frit, etch, and films have a corresponding energy performance benefit.
- Frit, etch, and films will cost less than UV products, in general.
- If starting with a high-end glazing system, bird-friendly glass might be less expensive.
- Considering issue up front might reduce glazing cost comparing facade materials.

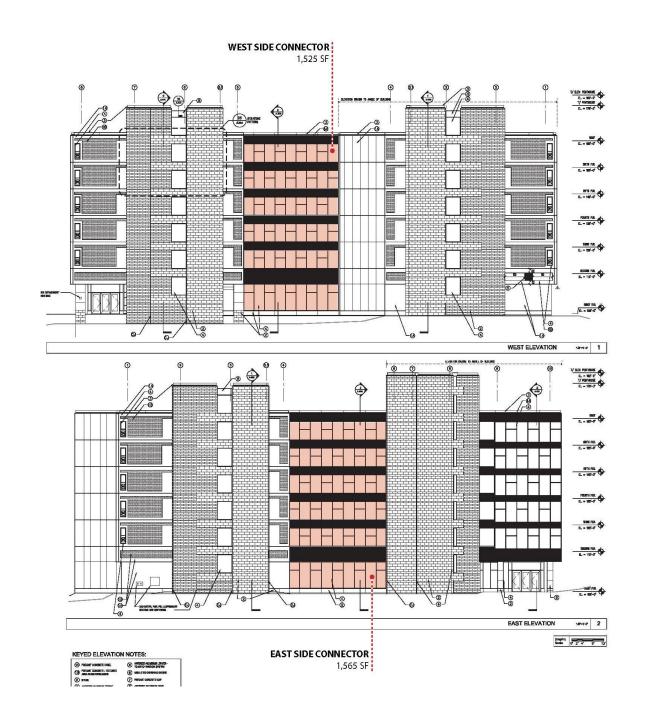
ESTIMATE OF PROBABLE COSTS

MITIGATION

VS.

Ogg Residence Hall 2"x2" by 1/4" White Dots Varies by Supplier \$6-12/SF Low Bidder \$6.30/SF TF = 15

If considered initially...hypothetically speaking


- \$1,000,000 for all glass in Ogg Residence Hall
- 3,000 SF of 'connector glass' most offending
- An additional \$9/SF to mitigate from day 1
- \$27,000 upcharge = ~3% of glass budget
- \$27.9M cost = .001% of total budget

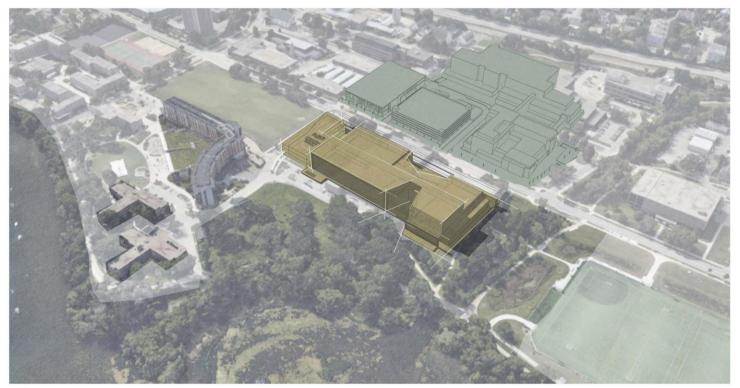
NEW CONSTRUCTION

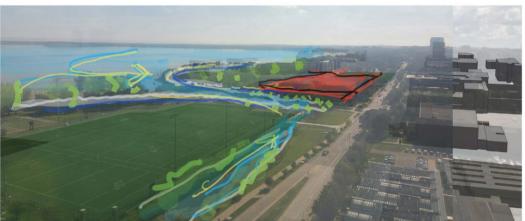
Linden Drive Parking Garage 2"x2" by 1/4" Ceramic Frit S2 Base Glass \$20/SF: \$432,000 – 2.2% Frit Glass \$28/SF: \$604,800 – 3.0% \$20M Total Construction Cost TF = 25

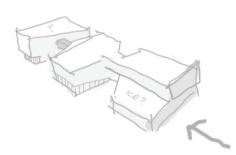
What additional benefits is frit providing?

- Energy costs
- Occupant comfort glare
- Building narrative brand
- Aesthetic effect

Floor Connector/Box Canyon


Existing Condition




Proposed Mitigation

2"x2" gridded dot pattern (1/4" white dot diameter) Windowface #1 as shown (outside) Windowface #4 optional (inside)

