Biodiesel Use in Madison's Diesel Fleet

Charting a Path to a Sustainable Future

Biodiesel?

• Diesel fuel made from non-fossil materials

- o Soy, Sunflower, Canola
- Waste oil
- Alternative feedstocks
- Blended with petrodiesel in varying mixes:

o B2, B5, B20, B100

Madison is taking a leadership position

- Exploring biodiesel use in fleet vehicles
- Partnering with biodiesel producers
- Developing and supporting biodiesel markets
- We're not alone:
 - o Boston, MA B5
 - Keene, NH B20
 - o San Francisco, CA B20
 - o Dallas, TX B20 w/ NOx-reducing additive
 - Nevada, IA exploring B100
 - o San Jose, CA Garbage trucks burn B100

Why does Madison's participation matter?

Biofuels are coming

o 30% of liquid transportation fuels by 2030

• Governor Doyle is pushing to develop Wisconsin's bioeconomy

Production pathways and market development will strongly impact benefits O Biodiesel vs. corn ethanol

Why is biodiesel "green"? *Emissions*

• Reduced CO₂ footprint

- Switching to B20 (20% biodiesel) could cut Madison's CO₂ output by over 3000 tons/year
- Greatly reduced tailpipe emissions
 - Reduced VOCs, CO, particulates, and more
 - Slight increase in NOx

Why is biodiesel "green"? *Production*

Per net energy gain, biodiesel results in...

- o 99% less nitrogen,
- o ~92% less phosphorus, and,
- o 87% less pesticide release than corn ethanol

• However, agro-chemicals are still used to grow soybeans in WI For example ...

• Phosphate (fertilizer): applied to 55% of soybean acres

• Glyphosphate isopropylamine (herbicide): applied to 97% of soybean acres

• Within soybean production, there are better management practices • Production as part of a larger soybean-non-soybean crop rotation

What does this mean for public health?

Reduction in emissions contributes to:


• Less cancer risk due to air toxics—3 of the national and regional drivers of cancer risk would be reduced by a shift to biodiesel

• Potential reductions in:

- × Acute respiratory hospital admissions
- × School and work absences
- Medication use among asthmatics and others with compromised respiratory conditions
- × Chronic bronchitis, irregular heartbeat, heart attacks
- In the Southern California Air Basin (SoCAB) study, a 100% penetration of B20 in the HDDV fleet would result in a 5% reduction in premature mortality due to air toxics exposure
- Health risks as a result of fuel spills are attenuated (but not eliminated) by the use of biodiesel

Environmental advantages: water quality

- Soy production uses less irrigation water than corn (in the Midwest)
- Reduced phosphorus use could improve water quality in Madison lakes

But – what are the risks?

• Food security

• Transportation fuels competing with food supply

• Agricultural intensity

• Will we move marginal lands into production?

• Economic risks

• Relatively small soy oil market is relatively volatile

• NO_X

• Increases cardiopulmonary injury, inflammation, and exacerbate allergies

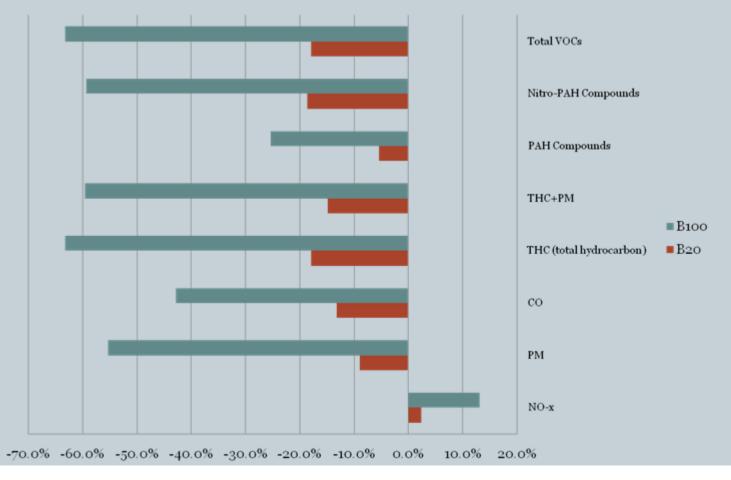
Minimize risks

Encourage local development

- Minimize transportation costs
- Keep costs, benefits "close to home."

Encourage waste oil recycling
Cooking oil dropoff planned
Incentives (UK bus passes)

- Encourage conservation
- NO_X controls (fuel additives)
- Watch the market!


Scenarios		
Mix	Carbon Reduction (Tons)	Percent
B5	800	~4%
B20	3,000	~15%
B100	17,000	~78%

Questions, comments, discussion?

Change in emissions (SoCAB study)

Comparison of Diesel and Biodiesel Emissions

Average Percent Change from Petrodiesel to B20 and B100

