Complete all sections of this application, making sure to note the requirements on the accompanying checklist (reverse).
If you need an interpreter, translator, materials in alternate formats or other accommodations to access these forms, please call (608) 266-4635

City of Madison
Planning Division 215 Martin Luther King Jr Blvd, Ste 017 PO Box 2985
Madison, WI 53701-2985
(608) 266-4635

1. LOCATION

Project Address: 3701 Council Crest, Madison WI 53711 Alder District: 10

2. PROJECT

ProjectTitle/Description: New Home Construction

This is an application for: (check all that apply)
\square New Construction/Alteration/Addition in a Local Historic District or Designated Landmark (specify):Mansion HillThird Lake Ridge
University HeightsMarquette Bungalows
First SettlementLandmarkLand Division/Combination in a Local Historic District or to Designated Landmark Site (specify):Mansion Hill
\square Third Lake Ridge
University HeightsMarquette BungalowsFirst SettlementLandmarkDemolitionDevelopment adjacent to a Designated LandmarkVariance from the Historic Preservation Ordinance (Chapter 41)Landmark Nomination/Rescission or Historic District Nomination/Amendment (Please contact the Historic Preservation Planner for specific Submission Requirements.)Informational Presentation
\square Other (specify):

3. APPLICANT

Applicant's Name:Jon and Brenda Furlow

Address: 2120 Girard Ave S, Minneapolis, MN 55405
\qquad
Telephone: 608.852 .4506 Email: ion.furlow@gmail.com

Property Owner (if not applicant): \qquad
Address: \qquad
Property Owner's Signature:

NOTICE REGARDING LOBBYING ORDINANCE: If you are seekipg approval of a development that has over 40,000 square feet of non-residential space, or a residential development of over 10 dwelling units, or if yoy are seeking assistance from the City with a value of $\$ 10,000$ (including grants, loans, TIF or similar assistance), then you likely are subject to Madison's lobbying ordinance (Sec. 2.40, MGO). You are required to register and report your lobbying. Please consult the City Clerk's Office for more information. Failure to comply with the lobbying ordinance may result in fines.

4. APPLICATION SUBMISSION REQUIREMENTS (see checklist on reverse)

All applications must be filed by 12:00pm on the submission date with the Preservation Planner. Applications submitted after the submission date or incomplete applications will be postponed to the next scheduled filing time. Submission deadlines can be viewed here: https://www.cityofmadison.com/dpced/planning/documents/LC Meeting Schedule Dates.pdf

Jon and Brenda Furlow
 2120 Girard Ave S, Minneapolis, MN 55405
 jon.furlow@gmail.com 608.852.4506
 bsfurlow71@gmail.com 608.692.0175

July 21, 2023

Dear Landmarks Commission:

Thank you for the opportunity to submit this letter of intent for new construction of a home at 3701 Council Crest, which is a designated landmark lot adjacent to the Old Spring Tavern. Brenda and I lived in Nakoma on Oneida Place for 22 years, were very active in the neighborhood and raised our family there. In 2015, we relocated to Minneapolis for job-related reasons, and are now in a position to return to Madison. We purchased this lot so could return to the Nakoma neighborhood.

We have been closely following the controversy over the lot division to better understand and address concerns about building a home. We have been working with archeologists, arborists, as well as our builder, professional engineer and landscape professional to find a solution that is consistent with the Tavern and Nakoma area, is reasonable and addresses both the concerns raised during the land division hearings, and more recently the concerns raised when we filed our prior March application, that we withdrew.

This Application includes the following items for your consideration:

1. Architectural drawings, including dimensioned site plans, elevations, and floor plan and roof plan.
2. Perspective renderings.
3. Engineering plans for stormwater management.
4. Initial landscape plans.
5. Photographic supplement.

As long time Nakoma residents, we are interested in proposing a home that fits within the neighborhood. Since last September, we have devoted countless hours and significant resources to plan and design a home that is consistent with existing homes in Nakoma, and addresses the concerns raised by neighbors.

Here are some of the considerations that we worked with as we planned this project:

1. Respecting Native American Heritage. Long ago there were some artifacts found at this site, but they were removed to the Wisconsin Historical Society. ${ }^{1}$ Since then, there has been significant site excavation for landscaping purposes. And as part of the land division hearings, a full archeological study and report was completed and submitted for this site. The

[^0]archeologist found no evidence of burials, mounds or other Native American use of the property and no evidence of deposits or features associated with the historic Old Spring Tavern. Rather, the burial mounds in the area were located across Spring Trail at the property now known as 3622 Nakoma Road.
2. The Landmark Site Has Been Altered and Developed Over Time. Historically, this site was open space populated by oak trees and a large black walnut tree. The oak trees were cut down years ago perhaps to build the Tavern (Allison 2005, 22), and the black walnut tree remains. Since then, the site has been heavily landscaped with gardens and the construction of various retaining walls. Similarly, the Tavern itself has been changed with the addition of large porches, the construction of a driveway and large parking pad, patio area, as well as a garage complex and shed:

View east toward Tavern from Council Crest

View west from Tavern toward Council Crest
3. Preserving the Black Walnut Tree. While some estimate that the black walnut tree is 300 years old, dating based on forestry methods ${ }^{2}$ age the tree at about 234 years. The average lifespan of a black walnut is 250 years based on the DNR Handbook of Silverculture (Chpt. 45), and that can be reduced by up to 20% to 200 years for urban trees according to the Illinois Horticultural Extension. It's reasonable to conclude that this tree is nearing the end of its years.

Still, we understand the strong interest in maintaining this tree, so we have no plans to cut the tree down. Instead, we have modified the plans for our home to preserve the tree. We have worked with arborists to configure and reduce (i.e. notch in) the foundation footprint to mitigate root impacts. And we are planning steps during construction to minimize root impacts. Of course, nothing is guaranteed but we are taking reasonable steps to preserve this tree.
4. Preserving Existing Site Elements. The site is bordered by a black iron fence with a gate, and contains a large number of stones that were used to construct various retaining walls. We are planning to retain the fence around the site after construction, and repurpose the existing stone work as part of the final landscaping work.

[^1]5. Planning for a Smaller Second Floor to Reduce The Profile. We are sensitive to the concerns during the lot division hearings that a house would be built on the site that is out of scale with the Tavern and neighborhood, so we planned a house consistent with the immediate area. Like many lots in Nakoma, our lot is on a hill. And like many homes in Nakoma on hills we will have an exposed basement that exposes three full floors. The Tavern is an example of this:

Nakoma Road Tavern View - Three Floors with an Exposed Basement
To reduce the size of our house looking up from the Tavern, we did not add a full second floor, but limited the size of the second-floor area to about 35% of the first-floor area. Limiting the size of the second floor also reduces the profile from the Council Crest side. Put differently, rather than propose a full two-story house on Council Crest, which from the Tavern would appear as three full floors, we incorporated a smaller second floor that reduces the size from the Tavern side.
6. Our Planned Home is Consistent in Scale with the Tavern Residence. To better understand our proposed home in the context of the Tavern home, we prepared side by side comparison of elevations using the actual dimensions from our submitted plans, and actual dimensions from the Design Coalition drawings of the Tavern dated September 2000 when the garage
 and other structures were added to the Tavern. Of course, there are differences in the structures, but from an overall perspective, they are consistent in scale, with the Tavern about 2 feet taller and about 3 feet wider than our planned home.
7. Our Planned Home is Consistent with Adjacent Development. There has been a lot of adjacent and nearby development since the Tavern was built in 1854. There were additions to the Tavern itself in 2000, including the garage complex, driveway and shed.

Tavern Driveway and Parking Area

Tavern Garage Complex

Next door to the Tavern, there is a contemporary looking house at 3714 Nakoma Road. And looking from the rear patio of the Tavern, there is a contemporary two-story house at 3705 Council Crest with a full exposed basement, making it three levels from the Tavern view.

View from Nakoma Road - 3714 Nakoma Road Adjacent to Tavern

View from Corner of Tavern Lot to House at 3705 Council Crest
8. Our Planned Home is Consistent in Style and Scale With Nakoma Development. Our proposed house is a stucco, Tudor-style house which is common in Nakoma. Although on the larger side for Nakoma, there are a number of larger homes in the neighborhood, including some on the adjacent streets. This is demonstrated by a comparison of our proposed house to others in Nakoma using three different measurements from the Madison property tax records.

We first compared houses by "living area" sq./ft as reported by Madison property tax records ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ floor). Using this measure, there are at least 20 houses in Nakoma (and at least
two on the surrounding blocks) that are larger than our proposed house. ${ }^{3}$ We next compared houses by total sq./ft (all floors, porches, patios and basement). Using this measure, there are 10 homes, including the Tavern, that measure over 5000 square feet and 7 of those are larger than our proposed home. ${ }^{4}$ And third, we compared houses by looking at total sq./ft (all floors, porches, patios and basement) as a percentage of lot size. Using this measure, there are 10 houses larger than our proposed house, including 5 on the adjacent streets. ${ }^{5}$

Our proposed home is consistent in size with the Tavern, with a slightly larger footprint (left diagram), but slightly smaller in overall length from a street perspective. (right diagram).

Our proposed footprint is slightly larger because we reduced the size of our second floor to about 35% of the overall footprint to address viewshed concerns. We could have planned a house with a footprint closer in size with the Tavern by including a full sized second floor. But that didn't make sense to us since the overall house would then look larger both from the Tavern view (two full floors, plus a full exposed basement) and the Council Crest view (two full floors).
9. We Have Reduced Drainage Toward the Tavern. The approved CSM creating the lot includes a drainage easement, and we have discussed drainage concerns with the Tavern owners in part because of prior water seepage into the Tavern basement. To address concerns, we retained an engineering firm and have submitted with our application an Erosion Control and Stormwater Management Plan, which includes plans for grading and various improvements including a rain garden, and is supported by before and after run-off

[^2]calculations demonstrating that we have properly managed drainage away from the Tavern. Specifically, the Stormwater Runoff Summary demonstrates that the plan for our proposed home has reduced the run-off toward the Tavern property in every case from a 1-Year, 24 hr event to a $500-Y e a r, 24 \mathrm{hr}$ event.

Thank you again for considering our Application.
Jon and Brenda Furlow

LOWER LEVEL FINISHED PLAN MAIN LEVEL FINISHED PLAN UPPER LEVEL FINISHED PLAN	$\begin{aligned} &=1482 \text { SQ. FT. } \\ &=2156 \text { SQ. FT. } \end{aligned}$ $\text { = } 812 \text { SQ. FT. }$
$\overline{\text { TOTAL FINISHED }}$	= 4450 SQ. F .
Lower Level unfinished	$=674$ SQ. FT .
SCREEN PORCH	$=182$ SQ. F .
GARAGE	$=617$ SQ. FT .
Covered front porch	$=63 \mathrm{SQ} . \mathrm{Fr}$.
DECK	$=46$ SQ. FT .

LEFT ELEVATION

1/8"=1'-0"

10/12 PITCH ROOF
MAIN LEVEL - SCREEN PORCH

 MAI2 PITCH ROOF
 8\% OVER HANG ON GABLES

SCALE: $1^{\prime \prime}=25^{\prime}$

REAR YARD SETBACK CALCULATION: DEPTH MEASUREMENT TO REAR YARD CORNER: AVERAGE OF THE TWO: 105.89'
ROUNDED UP TO 32' FOR REAR YARD SETBACK

LOT COVERAGE/IMPERVIOUS SURFACE CALCULATION: TOTAL SURFACE: 3940 SQ. FT.
PERCENTAGE OF LOT COVERAGE: 36.4\%
PLEASE REFER TO BURSE ENGINEERINGंS PLAN/REPORT FOR STORM WATER MITIGATION

\otimes

REPLAT A OF
Cles

LOT 1

16,694 SQ. F
0.3832 AC .

SITE PLAN | SNER |
| :--- |
| Th12023 |
| Sale |
| SCALE: $1^{\prime \prime}=25^{\prime}$ |

5' PUBLIC SERVICE STRIP DOC. 463246 A
10 '
' CUBLIC SANITARY STRIP DO
10. PUBL
ACCESS RAINTENANCE AND

Jon and Brenda Furlow
 2120 Girard Ave S, Minneapolis, MN 55405
 jon.furlow@gmail.com 608.852.4506
 bsfurlow71@gmail.com 608.692.0175

July 21, 2023
Dear Landmarks Commission:

Please accept this as a photographic supplement to our July 21 letter of intent for new construction of a home at 3701 Council Crest, which is a designated landmark lot adjacent to the Old Spring Tavern.

Our July 21 letter of intent included comparative elevations as well as data from the Madison property tax records showing that our proposed home was consistent in style and size with the Tavern and development in the Nakoma neighborhood. We are now providing photographs showing homes in the immediate area to visually provide a sense of style and scale.

Overview of Proposed Home In Context of Neighboring Nakoma Homes

As noted in our July 21 letter of intent, our planned home is consistent in scale with the Tavern as shown by the diagram on the right that compares the Tavern elevations as drawn by Design Coalition for the September 2000 renovations, and the elevations of our home that we submitted with this application.

To add context, below is a map of surrounding houses from Madison Property Look-Up, and next to that is a Google Earth view of the same area. We have included photographs of individual properties below that provide visual context.

Area Homes Surrounding the Old Spring Tavern - 3706 Nakoma Road

Home Next Door to Our Proposed Home (3705 Council Crest)

Front View from Council Crest

Rear View with Exposed Basement from Back of Our Lot

Three Houses Down from Our Proposed Home, And Across Council Crest (3710 Council Crest)

View from Council Crest

Overhead View in Context with Nearby Homes

EROSION CONTROL AND STORMWATER MANAGEMENT REPORT

3701 COUNCIL CREST
MADISON, DANE COUNTY, WISCONSIN

JULY 20, 2023

PREPARED FOR:
HART DENOBLE BUILDERS, INC
7923 AIRPORT RD
MIDDLETON, WI 53562

PREPARED BY:
Burse Surveying and Engineering, Inc.
2801 International Lane, Suite 101
Madison, WI 53704
(608) 250-9263

BSEI FN: BSE2589

 .

10. ERosp:

为

DEELLOPENT PLAA
SIE LLAN NTITS.

crame plan notes.
.
yulur plan notes.

eveourton notes.

cracter sur

oteciver 16, 2024 proiect susstantaly cowpele
Mar 31, 2024
wur 33. 2024

Dial 82 or (800) 242-851
www.DiggersHotline.com

Furlow Residence

Stormwater Runoff Summary
Project:
Job Name: Furlow Residence

Task:
By:
Date:
Checked: PDF

BSE2589

Peak Flow Calcs
DRH
7/20/2023

Storm Event	Predevelopment	Post Developed Undetained	Post Development w/Rain Garden	Post Development w/o Rain Garden
	(CFS)	(CFS)	(CFS)	(CFS)
$1-Y e a r, 24 \mathrm{hr}$	0.32	0.24	0.62	0.66
$2-Y e a r, 24 \mathrm{hr}$	0.42	0.29	0.76	0.80
$5-$ Year, 24 hr	0.60	0.38	1.00	1.04
$10-Y e a r, 24 \mathrm{hr}$	0.81	0.48	1.26	1.31
$25-Y e a r, 24 \mathrm{hr}$	1.13	0.62	1.63	1.69
$100-Y e a r, 24 \mathrm{hr}$	1.74	0.87	2.30	2.36
$200-Y e a r, 24 \mathrm{hr}$	2.07	1.00	2.65	2.72
$500-Y e a r, 24 \mathrm{hr}$	2.62	1.21	3.22	3.30

NOTES: The predevelopment rates are the current flow rates to the 3706 Nakoma Road Property The post developed undetained rates are the post construction flow to the 3706 Nakoma Road Property

Dane County Map

Furlow Residence

Stormwater Runoff Summary
Project:
Job Name: Furlow Residence

Task:
By:
Date:
Checked: PDF

BSE2589

Peak Flow Calcs
DRH
7/20/2023

Storm Event	Predevelopment	Post Developed Undetained	Post Development w/Rain Garden	Post Development w/o Rain Garden
	(CFS)	(CFS)	(CFS)	(CFS)
$1-Y e a r, 24 \mathrm{hr}$	0.32	0.24	0.62	0.66
$2-Y e a r, 24 \mathrm{hr}$	0.42	0.29	0.76	0.80
$5-$ Year, 24 hr	0.60	0.38	1.00	1.04
$10-Y e a r, 24 \mathrm{hr}$	0.81	0.48	1.26	1.31
$25-Y e a r, 24 \mathrm{hr}$	1.13	0.62	1.63	1.69
$100-Y e a r, 24 \mathrm{hr}$	1.74	0.87	2.30	2.36
$200-Y e a r, 24 \mathrm{hr}$	2.07	1.00	2.65	2.72
$500-Y e a r, 24 \mathrm{hr}$	2.62	1.21	3.22	3.30

NOTES: The predevelopment rates are the current flow rates to the 3706 Nakoma Road Property The post developed undetained rates are the post construction flow to the 3706 Nakoma Road Property

Reach

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B / B	Depth (inches)	AMC
1	1-yr	MSE 24-hr	4	Default	24.00	1	2.49	2
2	2-yr	MSE 24-hr	4	Default	24.00	1	2.84	2
3	5-yr	MSE 24-hr	4	Default	24.00	1	3.45	2
4	$10-\mathrm{yr}$	MSE 24-hr	4	Default	24.00	1	4.09	2
5	25-yr	MSE 24-hr	4	Default	24.00	1	5.02	2
6	100-yr	MSE 24-hr	4	Default	24.00	1	6.66	2
7	200-yr	MSE 24-hr	4	Default	24.00	1	7.53	2
8	500-yr	MSE 24-hr	4	Default	24.00	1	8.94	2

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 35: Predeveloped

Runoff Area=11,906 sf 1.84% Impervious Runoff Depth $=0.70^{\prime \prime}$ Flow Length $=128$ ' $\mathrm{Tc}=4.3 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff $=0.32 \mathrm{cfs} 0.016 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.016$ af Average Runoff Depth $=0.70^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005$ ac

Summary for Subcatchment 35: Predeveloped
Runoff $=\quad 0.32 \mathrm{cfs} @ \quad 12.12 \mathrm{hrs}$, Volume $=\quad 0.016 \mathrm{af}$, Depth $=0.70^{11}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 1-yr Rainfall=2.49", la/S=0.10

Area (sf)		CN Description		
*	11,687	71 L	LS (HSG C)	
*	219	98 Im	Impervious	
	11,906	71 W	Weighted Average	
	11,687	71	98.16\% Pervious Area	
	219	981.	1.84\% Impervious Area	
$\begin{array}{r} T c \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	pe Velocity Capacity t) (ft/sec) (cfs)	Description
0.2	65	0.0880	O 4.45	Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
4.1	63	0.2140	$0 \quad 0.26$	Sheet Flow, Grass: Dense $\mathrm{n}=0.240 \quad \mathrm{P} 2=2.84^{\prime \prime}$

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 35: Predeveloped

Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=0.91^{11}$ Flow Length $=128$, $\quad T c=4.3 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff $=0.42 \mathrm{cfs} 0.021$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.021$ af Average Runoff Depth $=0.91^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005$ ac

Summary for Subcatchment 35: Predeveloped
Runoff $=\quad 0.42 \mathrm{cfs} @ 12.12 \mathrm{hrs}$, Volume $=0.021 \mathrm{af}$, Depth $=0.91^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$
MSE 24-hr 4 2-yr Rainfall=2.84", la/S=0.10

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 35: Predeveloped
Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=1.30^{\prime \prime}$ Flow Length $=128$ ' $T c=4.3 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff $=0.60 \mathrm{cfs} 0.030$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.030$ af Average Runoff Depth $=1.30^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005 a c$

Summary for Subcatchment 3S: Predeveloped
Runoff $=\quad 0.60 \mathrm{cfs} @ \quad 12.12 \mathrm{hrs}$, Volume $=\quad 0.030 \mathrm{af}$, Depth $=1.30^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 5-yr Rainfall=3.45", la/S=0.10

Area (sf)		CN Description		
*	11,687	71 L	LS (HSG C)	
*	219	98 Im	Impervious	
	11,906	71 W	Weighted Average	
	11,687	71	98.16\% Pervious Area	
	219	981.	1.84\% Impervious Area	
$\begin{array}{r} T c \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	$\begin{gathered} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	pe Velocity Capacity t) (ft/sec) (cfs)	Description
0.2	65	0.0880	O 4.45	Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
4.1	63	0.2140	$0 \quad 0.26$	Sheet Flow, Grass: Dense $\mathrm{n}=0.240 \quad \mathrm{P} 2=2.84^{\prime \prime}$

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 35: Predeveloped
Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=1.75^{\prime \prime}$ Flow Length $=128$ ' $T c=4.3 \mathrm{~min} \quad \mathrm{CN}=71$ Runoff $=0.81 \mathrm{cfs} 0.040$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.040$ af Average Runoff Depth $=1.75^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005 a c$

BSE2589 Stormwater Predeveloped Model
Prepared by Burse Surveying and Engineering Inc.
HydroCAD® 10.10-7a s/n 08315 © 2021 HydroCAD Software Solutions LLC
Summary for Subcatchment 35: Predeveloped
Runoff $=0.81 \mathrm{cfs} @ 12.12 \mathrm{hrs}$, Volume $=0.040 \mathrm{af}$, Depth $=1.75^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span $=0.00-25.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 10-yr Rainfall=4.09", Ia/S=0.10

Area (sf)		CN Description		
*	11,687	71 L	LS (HSG C)	
*	219	98 Im	Impervious	
	11,906	71 W	Weighted Average	
	11,687	71	98.16\% Pervious Area	
	219	981.	1.84\% Impervious Area	
$\begin{array}{r} T c \\ (\min) \\ \hline \end{array}$	Length (feet)	$\begin{array}{r} \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{array}$	ve Velocity Capacity t) (ft/sec) (cfs)	Description
0.2	65	0.0880	O 4.45	Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
4.1	63	0.2140	$0 \quad 0.26$	Sheet Flow, Grass: Dense $n=0.240 \quad \mathrm{P} 2=2.84^{\prime \prime}$

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 35: Predeveloped

Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=2.45^{\prime \prime}$ Flow Length=128' $\quad T c=4.3 \mathrm{~min} \quad C N=71$ Runoff $=1.13 \mathrm{cfs} 0.056$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.056$ af Average Runoff Depth $=2.45^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005$ ac

Summary for Subcatchment 3S: Predeveloped
Runoff $=\quad 1.13 \mathrm{cfs} @ \quad 12.12$ hrs, Volume $=\quad 0.056 \mathrm{af}$, Depth $=2.45^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$
MSE 24-hr 4 25-yr Rainfall=5.02", la/S=0.10

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 35: Predeveloped

Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=3.78^{\prime \prime}$ Flow Length=128' \quad Cc=4.3 min $C N=71$ Runoff $=1.74 \mathrm{cfs} 0.086$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.086$ af Average Runoff Depth $=3.78^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005$ ac

BSE2589 Stormwater Predeveloped Model
Prepared by Burse Surveying and Engineering Inc.
HydroCAD® 10.10-7a s/n 08315 © 2021 HydroCAD Software Solutions LLC
Summary for Subcatchment 35: Predeveloped
Runoff $=\quad 1.74 \mathrm{cfs} @ \quad 12.12$ hrs, Volume $=0.086 \mathrm{af}$, Depth $=3.78^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 100-yr Rainfall=6.66", la/S=0.10

Area (Sf) CN Description					
*	11,687	71 L	LS (HSG C)		
*	219	98 Im	Impervious		
	11,906	71 W	Weighted Aver	rage	
	11,687	71	98.16\% Pervio	dus Area	
	219	981.	1.84\% Imperv	ous Area	
$\begin{array}{r} T c \\ (\text { min }) \\ \hline \end{array}$	Length (feet)	$\begin{aligned} & \text { Slope } \\ & (\mathrm{ft} / \mathrm{ft}) \end{aligned}$	Velocity ($\mathrm{ft} / \mathrm{sec}$)	$\begin{array}{r} \text { Capacity } \\ (c f s) \\ \hline \end{array}$	Description
0.2	65	0.0880	O 4.45		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
4.1	63	0.2140	0.0 .26		Sheet Flow, Grass: Dense $n=0.240 \quad \mathrm{P} 2=2.84^{\prime \prime}$

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 35: Predeveloped
Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=4.53^{\prime \prime}$ Flow Length $=128^{\prime} \quad T c=4.3 \mathrm{~min} \quad C N=71$ Runoff $=2.07 \mathrm{cfs} 0.103$ af

Total Runoff Area $=0.273$ ac Runoff Volume $=0.103$ af Average Runoff Depth $=4.53^{\prime \prime}$ 98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005 a c$

BSE2589 Stormwater Predeveloped Model
Prepared by Burse Surveying and Engineering Inc.
HydroCAD® 10.10-7a s/n 08315 © 2021 HydroCAD Software Solutions LLC
Summary for Subcatchment 35: Predeveloped
Runoff $=\quad 2.07$ cfs @ 12.12 hrs, Volume $=0.103 \mathrm{af}$, Depth $=4.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$
MSE 24-hr 4 200-yr Rainfall=7.53", la/S=0.10

4.3128 Total

Subcatchment 35: Predeveloped

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 35: Predeveloped
Runoff Area $=11,906$ sf 1.84% Impervious Runoff Depth $=5.77^{\prime \prime}$ Flow Length $=128 \quad T_{c}=4.3 \mathrm{~min} \quad C N=71 \quad$ Runoff $=2.62 \mathrm{cfs} 0.131 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.131$ af Average Runoff Depth $=5.77^{\prime \prime}$
98.16% Pervious $=0.268$ ac 1.84% Impervious $=0.005 a c$

BSE2589 Stormwater Predeveloped Model
Prepared by Burse Surveying and Engineering Inc.
HydroCAD® 10.10-7a s/n 08315 © 2021 HydroCAD Software Solutions LLC
Summary for Subcatchment 35: Predeveloped
Runoff $=\quad 2.62$ cfs @ 12.12 hrs, Volume $=0.131 \mathrm{af}$, Depth $=5.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, $d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 500-yr Rainfall=8.94", la/S=0.10

4.3128 Total

Subcatchment 35: Predeveloped

Rainfall Events Listing

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B / B	Depth (inches)	AMC
1	1-yr	MSE 24-hr	4	Default	24.00	1	2.49	2
2	2-yr	MSE 24-hr	4	Default	24.00	1	2.84	2
3	5-yr	MSE 24-hr	4	Default	24.00	1	3.45	2
4	$10-\mathrm{yr}$	MSE 24-hr	4	Default	24.00	1	4.09	2
5	25-yr	MSE 24-hr	4	Default	24.00	1	5.02	2
6	100-yr	MSE 24-hr	4	Default	24.00	1	6.66	2
7	200-yr	MSE 24-hr	4	Default	24.00	1	7.53	2
8	500-yr	MSE 24-hr	4	Default	24.00	1	8.94	2

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=1.37^{\prime \prime}$ Flow Length=157 $\quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86 \quad$ Runoff $=0.42 \mathrm{cfs} 0.020 \mathrm{af}$

Runoff Area=4,361 sf 33.23\% Impervious Runoff Depth $=1.31^{11}$ Flow Length=52' $\quad T C=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=0.24 \mathrm{cfs} 0.011 \mathrm{af}$

Peak Elev=881.67' Storage=189 cf Inflow=0.42 cfs 0.020 af Discarded $=0.02 \mathrm{cfs} 0.010$ af Primary $=0.39 \mathrm{cfs} 0.008$ af Outflow $=0.41 \mathrm{cfs} 0.018 \mathrm{af}$

Inflow=0.62 cfs 0.019 af Primary $=0.62 \mathrm{cfs} 0.019 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.031$ af Average Runoff Depth $=1.35^{\prime \prime}$ 64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 1S: Area to Rain Garden
Runoff $=0.42$ cfs @ 12.11 hrs, Volume $=0.020 \mathrm{af}$, Depth $=1.37^{\prime \prime}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 1-yr Rainfall=2.49", la/S=0.10

Area (sf) CN Description					
4,710 78 LS (HSG D one higher than existing)					
2,415 98 Roof					
36998 SW					
49100 Rain Garden					
7,543 86 Weighted Average					
4,710 78 62.44\% Pervious Area					
2,833 98 37.56\% Impervious Are					
$\begin{array}{r} T c \\ (\min) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity t) (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \\ \hline \end{array}$	Description
0.4	125	0.1240	O 5.28		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow, Smooth surfaces $\mathrm{n}=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
2.2	18	0.0333	0.14		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=2.84^{\prime \prime}$

2.7157 Total

Subcatchment 1S: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=0.24 \mathrm{cfs} @ 12.10 \mathrm{hr5}$, Volume= $\quad 0.011 \mathrm{af}$, Depth $=1.31^{1 \prime}$
Routed to Link 6L:Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 1-yr Rainfall $=2.49$ ", $\mathrm{I} / \mathrm{S}=0.10$

	Area (5f)	CN D	Description		
2,912		78	LS (HSG D one higher than existing)		
	646	98 R	Roof		
803		98 Pavement			
4,361			Weighted Average		
	2,912	78	66.77\% Pervious Area		
1,449		983	33.23\% Impervious Area		
$\begin{array}{r} T c \\ (\text { min }) \end{array}$	Length (feet)	Slope (ft/ft)	pe Velocity t) (ft/sec)	Capacity (cfs)	Description
0.0	10	0.3150	O 8.42		Shallow Concentrated Flow,
					Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
0.6	28	0.0130	0.85		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

Inflow Area $=$	$0.273 \mathrm{ac}, 35.97 \%$	Impervious, Inflow Depth $=0.85^{\prime \prime}$	for 1 -yr event
Inflow $=$	$0.62 \mathrm{cfs} @$	12.10 hrs, Volume $=$	0.019 af
Primary $=$	$0.62 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$	0.019 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 15: Area to Rain Garden

Subcatchment 55: Undetained Area

Pond 2P: Rain Garden
Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=1.66^{\prime \prime}$ Flow Length $=157 \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=0.51 \mathrm{cfs} 0.024$ af

Runoff Area $=4,361$ sf 33.23% Impervious Runoff Depth $=1.60^{\prime \prime}$ Flow Length $=52$ ' $\quad T c=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=0.29 \mathrm{cfs} 0.013$ af

Peak Elev=881.69' Storage=195 cf Inflow=0.51 cfs 0.024 af Discarded $=0.02 \mathrm{cfs} 0.011$ af Primary $=0.47 \mathrm{cfs} 0.012$ af Outflow $=0.50 \mathrm{cfs} 0.022$ af

Link 6L: Summary
Inflow=0.76 cfs 0.025 af Primary $=0.76 \mathrm{cfs} 0.025 \mathrm{af}$

$$
\text { Total Runoff Area }=0.273 \text { ac } \text { Runoff Volume }=0.037 \text { af Average Runoff Depth }=1.64^{\prime \prime}
$$

64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 1S: Area to Rain Garden
Runoff $=0.51$ cfs @ 12.11 hrs, Volume $=0.024 \mathrm{af}$, Depth $=1.66^{\prime \prime}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 2-yr Rainfall=2.84", |a/S=0.10

2.7157 Total

Subcatchment 1S: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=0.29 \mathrm{cfs} @ 12.10 \mathrm{hr5}$, Volume= $\quad 0.013 \mathrm{af}$, Depth $=1.60^{\prime \prime}$
Routed to Link 6L:Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 2-yr Rainfall $=2.84^{\prime \prime}, \mathrm{la} / \mathrm{S}=0.10$

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

| Inflow Area $=$ | $0.273 \mathrm{ac}, 35.97 \%$ Impervious, Inflow Depth $=1.10^{\prime \prime}$ for $2-\mathrm{yr}$ event | |
| :--- | :--- | :--- | :--- |
| Inflow $=$ | $0.76 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$ | 0.025 af |
| Primary $=$ | $0.76 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$ | 0.025 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden
Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=2.20^{\prime \prime}$ Flow Length $=157^{\prime} \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=0.66 \mathrm{cfs} 0.032$ af

Runoff Area $=4,361$ sf 33.23% Impervious Runoff Depth $=2.13^{\prime \prime}$
Flow Length $=52$ ' $\quad T c=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=0.38 \mathrm{cfs} 0.018 \mathrm{af}$
Peak Elev=881.72' Storage=204 cf Inflow=0.66 cfs 0.032 af Discarded $=0.02 \mathrm{cfs} 0.012$ af Primary $=0.62 \mathrm{cfs} 0.018$ af Outflow $=0.65 \mathrm{cfs} 0.030$ af

Link 6L: Summary

Total Runoff Area $=0.273$ ac Runoff Volume $=0.049$ af Average Runoff Depth $=2.17^{\prime \prime}$ 64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 1S: Area to Rain Garden

Runoff $=0.66 \mathrm{cfs} @ \quad 12.11 \mathrm{hrs}$, Volume $=0.032 \mathrm{af}$, Depth $=2.20^{11}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 5-yr Rainfall=3.45", la/S=0.10

Area (sf) CN Description					
4,710 78 LS (HSG D one higher than existing)					
2,415 98 Roof					
* 36998 SW					
49100 Rain Garden					
7,54386 Weighted Average					
4,710 78 62.44\% Pervious Area					
2,833 98 37.56\% Impervious Are					
$\begin{array}{r} T c \\ (\min) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	pe Velocity t) $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
0.4	125	0.1240	- 5.28		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
2.2	18	0.0333	0.14		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=2.84^{\prime \prime}$

2.7157 Total

Subcatchment 1S: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=\quad 0.38 \mathrm{cfs} @ 12.10$ hrs, Volume $=$
Routed to Link 6L:Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 5-yr Rainfall=3.45", la/S=0.10

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

| Inflow Area $=$ | $0.273 \mathrm{ac}, 35.97 \%$ | Impervious, Inflow Depth $=1.56^{\prime \prime}$ for 5 -yr event |
| :--- | :--- | :--- | :--- |
| Inflow $=$ | $1.00 \mathrm{cfs} @ 12.10$ hrs, Volume $=$ | 0.035 af |
| Primary $=$ | $1.00 \mathrm{cfs} @ 12.10$ hrs, Volume $=$ | 0.035 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, $d t=0.01 \mathrm{hrs}, 2501$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=2.78^{\prime \prime}$ Flow Length $=157^{\prime} \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=0.83 \mathrm{cfs} 0.040$ af

Runoff Area=4,361 sf 33.23% Impervious Runoff Depth $=2.70^{\prime \prime}$ Flow Length $=52$ ' $\quad T c=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=0.48 \mathrm{cfs} 0.023 \mathrm{af}$

Peak Elev=881.76' Storage=214 cf Inflow=0.83 cfs 0.040 af Discarded $=0.03 \mathrm{cfs} 0.013$ af Primary $=0.78 \mathrm{cfs} 0.025$ af Outflow $=0.81 \mathrm{cfs} 0.038$ af

Inflow=1.26 cfs 0.047 af Primary $=1.26 \mathrm{cfs} \quad 0.047 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.063$ af Average Runoff Depth $=2.75^{\prime \prime}$
64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 1S: Area to Rain Garden

Runoff $=0.83$ cfs @ 12.11 hrs , Volume $=0.040 \mathrm{af}$, Depth $=2.78^{\prime \prime}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 10-yr Rainfall=4.09", Ia/S=0.10

Area (sf) CN Description					
4,710 78 LS (HSG D one higher than existing)					
2,415 98 Roof					
* 36998 SW					
49100 Rain Garden					
7,543 86 Weighted Average					
4,710 78 62.44\% Pervious Area					
2,833 98 37.56\% Impervious Are					
$\begin{array}{r} T c \\ (\min) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	pe Velocity t) $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
0.4	125	0.1240	- 5.28		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
2.2	18	0.0333	0.14		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=2.84^{\prime \prime}$

2.7157 Total

Subcatchment 15: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=\quad 0.48 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$
Routed to Link 6L:Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 10-yr Rainfall=4.09", la/S=0.10

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

Inflow Area $=$	$0.273 \mathrm{ac}, 35.97 \%$ Impervious, Inflow Depth $=2.07^{\prime \prime}$ for $10-\mathrm{yr}$ event	
Inflow $=$	$1.26 \mathrm{cfs} @ 12.10$ hrs, Volume $=$	0.047 af
Primary $=$	$1.26 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$	0.047 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=3.64^{\prime \prime}$ Flow Length $=157 \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=1.07 \mathrm{cfs} 0.052$ af

Runoff Area $=4,361$ sf 33.23% Impervious Runoff Depth $=3.55^{\prime \prime}$ Flow Length $=52$ ' $\quad \mathrm{Cc}=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=0.62 \mathrm{cfs} 0.030$ af

Peak Elev=881.81' Storage=228 cf Inflow=1.07 cfs 0.052 af Discarded $=0.03 \mathrm{cfs} 0.015$ af Primary $=1.02 \mathrm{cfs} 0.035$ af Outflow $=1.05 \mathrm{cfs} 0.050$ af

Inflow $=1.63 \mathrm{cfs} 0.065 \mathrm{af}$ Primary $=1.63 \mathrm{cfs} 0.065 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.082$ af Average Runoff Depth $=3.61^{\prime \prime}$ 64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 1S: Area to Rain Garden
Runoff $=\quad 1.07$ cfs @ 12.10 hrs, Volume $=0.052 \mathrm{af}$, Depth $=3.64^{\prime \prime}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 25-yr Rainfall=5.02", la/S=0.10

Area (sf) CN Description					
*	$\begin{aligned} & 4,710 \\ & 2,415 \end{aligned}$	78 LS (HSG D one higher than existing)			
*		98 R	Roof		
*	369	98	SW		
49		100	Rain Garden		
7,543		86 Weighted Average			
	4,710	78	62.44\% Pervious Area		
	2,833	98	37.56\% Impervious Area		
$\begin{array}{r} T c \\ (\min) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	pe Velocity t) $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
0.4	125	0.1240	- 5.28		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
2.2	18	0.0333	0.14		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=2.84^{\prime \prime}$

$2.7 \quad 157$ Total

Subcatchment 1S: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, d t=0.01 \mathrm{hrs}$ MSE 24-hr 4 25-yr Rainfall=5.02", la/S=0.10

	Area (5f)	CN D	Description		
2,912		78	LS (HSG D one higher than existing)		
	646	98 R	Roof		
803		98 Pavement			
4,361			Weighted Average		
	2,912	78	66.77\% Pervious Area		
1,449		983	33.23\% Impervious Area		
$\begin{array}{r} T c \\ (\text { min }) \end{array}$	Length (feet)	Slope (ft/ft)	pe Velocity t) (ft/sec)	Capacity (cfs)	Description
0.0	10	0.3150	O 8.42		Shallow Concentrated Flow,
					Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
0.6	28	0.0130	0.85		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

| Inflow Area $=$ | $0.273 \mathrm{ac}, 35.97 \%$ | Impervious, Inflow Depth $=2.86^{\prime \prime}$ for $25-\mathrm{yr}$ event |
| :--- | :--- | :--- | :--- |
| Inflow $=$ | $1.63 \mathrm{cfs} @ 12.10$ hrs, Volume $=$ | 0.065 af |
| Primary $=$ | $1.63 \mathrm{cfs} @ 12.10$ hrs, Volume $=$ | 0.065 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=5.20^{\prime \prime}$ Flow Length $=157 \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=1.49 \mathrm{cfs} 0.075$ af

Runoff Area $=4,361$ sf 33.23% Impervious Runoff Depth $=5.10^{\prime \prime}$ Flow Length $=52$ ' $\quad T c=0.7 \mathrm{~min} \quad C N=85$ Runoff $=0.87 \mathrm{cfs} 0.043$ af

Peak Elev=881.88' Storage=254 cf Inflow=1.49 cfs 0.075 af Discarded $=0.03 \mathrm{cfs} 0.016$ af Primary $=1.43 \mathrm{cfs} 0.056$ af Outflow $=1.47 \mathrm{cfs} 0.072$ af

Inflow=2.30 cfs 0.098 af
Primary $=2.30 \mathrm{cfs} 0.098 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.117$ af Average Runoff Depth $=5.16^{\prime \prime}$ 64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 15: Area to Rain Garden
Runoff $=1.49 \mathrm{cfs} @ 12.10$ hrs, Volume $=0.075 \mathrm{af}$, Depth $=5.20^{\prime \prime}$

Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 100-yr Rainfall=6.66", la/S=0.10

$2.7 \quad 157$ Total

Subcatchment 15: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=\quad 0.87 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$
Routed to Link 6L:Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 100-yr Rainfall=6.66", la/S=0.10

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

| Inflow Area $=$ | $0.273 \mathrm{ac}, 35.97 \%$ | Impervious, Inflow Depth $=4.32^{\prime \prime}$ for $100-\mathrm{yr}$ event |
| :--- | :---: | :---: | :---: | :---: |
| Inflow $=$ | $2.30 \mathrm{cfs} @ 12.10$ hrs, Volume $=$ | 0.098 af |
| Primary $=$ | $2.30 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$ | 0.098 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=6.03$ " Flow Length $=157 \quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff $=1.72 \mathrm{cfs} 0.087$ af

Runoff Area $=4,361$ sf 33.23% Impervious Runoff Depth $=5.93{ }^{\prime \prime}$
Flow Length $=52^{\prime} \quad T c=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=1.00 \mathrm{cfs} 0.049 \mathrm{af}$
Peak Elev=881.91' Storage $=267$ cf Inflow=1.72 cfs 0.087 af Discarded $=0.04 \mathrm{cfs} 0.017$ af Primary $=1.65 \mathrm{cfs} 0.067$ af Outflow $=1.69 \mathrm{cfs} 0.084$ af

$$
\text { Total Runoff Area }=0.273 \text { ac Runoff Volume }=0.137 \text { af Average Runoff Depth }=6.00^{\prime \prime}
$$

$$
64.03 \% \text { Pervious }=0.175 \text { ac } 35.97 \% \text { Impervious }=0.098 \text { ac }
$$

Summary for Subcatchment 1S: Area to Rain Garden
Runoff $=\quad 1.72$ cfs @ 12.10 hrs, Volume $=0.087 \mathrm{af}$, Depth $=6.03^{\prime \prime}$

Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 200-yr Rainfall=7.53", la/S=0.10

$2.7 \quad 157$ Total

Subcatchment 15: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=\quad 1.00 \mathrm{cfs} @ 12.09$ hrs, Volume $=0.049 \mathrm{af}$, Depth $=5.93^{\prime \prime}$

Routed to Link 6L: Summary

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span $=0.00-25.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 200-yr Rainfall=7.53", la/S=0.10

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

| Inflow Area $=$ | $0.273 \mathrm{ac}, 35.97 \%$ | Impervious, Inflow Depth $=5.11^{\prime \prime}$ | for 200 -yr event |
| :--- | :---: | :---: | :---: | :---: |
| Inflow $=$ | $2.65 \mathrm{cfs} @$ | 12.10 hrs, Volume $=$ | 0.116 af |
| Primary $=$ | $2.65 \mathrm{cfs} @$ | 12.10 hrs, Volume $=$ | 0.116 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 15: Area to Rain Garden

Subcatchment 5S: Undetained Area

Pond 2P: Rain Garden

Link 6L: Summary

Runoff Area $=7,543$ sf 37.56% Impervious Runoff Depth $=7.40^{\prime \prime}$ Flow Length=157' $\quad T c=2.7 \mathrm{~min} \quad \mathrm{CN}=86$ Runoff=2.09 cfs 0.107 af

Runoff Area=4,361 sf 33.23% Impervious Runoff Depth $=7.29^{\prime \prime}$
Flow Length $=52$ ' $\quad T c=0.7 \mathrm{~min} \quad \mathrm{CN}=85$ Runoff $=1.21 \mathrm{cfs} 0.061 \mathrm{af}$
Peak Elev=881.96' Storage=289 cf Inflow=2.09 cfs 0.107 af Discarded $=0.04 \mathrm{cfs} 0.019$ af Primary $=2.01 \mathrm{cfs} 0.085$ af Outflow $=2.05 \mathrm{cfs} 0.104 \mathrm{af}$

Inflow=3.22 cfs 0.146 af Primary $=3.22 \mathrm{cfs} 0.146 \mathrm{af}$

Total Runoff Area $=0.273$ ac Runoff Volume $=0.168$ af Average Runoff Depth $=7.36^{\prime \prime}$
64.03% Pervious $=0.175$ ac 35.97% Impervious $=0.098$ ac

Summary for Subcatchment 15: Area to Rain Garden

Runoff $=\quad 2.09 \mathrm{cfs} @ 12.10$ hrs, Volume $=0.107 \mathrm{af}$, Depth $=7.40^{11}$
Routed to Pond 2P : Rain Garden

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ MSE 24-hr 4 500-yr Rainfall=8.94", la/S=0.10

Area (sf) CN Description					
*	$\begin{aligned} & 4,710 \\ & 2,415 \end{aligned}$	78 LS (HSG D one higher than existing)			
*		98 R	Roof		
*	369	98	SW		
49		100	Rain Garden		
7,543		86 Weighted Average			
	4,710	78	62.44\% Pervious Area		
	2,833	98	37.56\% Impervious Area		
$\begin{array}{r} T c \\ (\min) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	pe Velocity t) $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
0.4	125	0.1240	- 5.28		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow, Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
2.2	18	0.0333	0.14		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=2.84^{\prime \prime}$

$2.7 \quad 157$ Total
Subcatchment 15: Area to Rain Garden

Summary for Subcatchment 5S: Undetained Area

[49] Hint: Tc<2dt may require smaller $d t$
Runoff $=\quad 1.21 \mathrm{cfs} @ 12.09 \mathrm{hr5}$, Volume= $\quad 0.061 \mathrm{af}$, Depth $=7.29^{\prime \prime}$
Routed to Link 6L:Summary

Runoff by SCS TR- 20 method, UH=SCS, Weighted-CN, Time Span= $0.00-25.00 \mathrm{hrs}$, dt= 0.01 hrs MSE 24-hr 4 500-yr Rainfall $=8.94$ ", la/S=0.10

	Area (5f)	CN D	Description		
2,912		78	LS (HSG D one higher than existing)		
	646	98 R	Roof		
803		98 Pavement			
4,361			Weighted Average		
	2,912	78	66.77\% Pervious Area		
1,449		983	33.23\% Impervious Area		
$\begin{array}{r} T c \\ (\text { min }) \end{array}$	Length (feet)	Slope (ft/ft)	pe Velocity t) (ft/sec)	Capacity (cfs)	Description
0.0	10	0.3150	O 8.42		Shallow Concentrated Flow,
					Grassed Waterway Kv=15.0 fps
0.1	14	1.0000	O 4.18		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$
0.6	28	0.0130	0.85		Sheet Flow,
					Smooth surfaces $n=0.011 \quad \mathrm{P} 2=2.84^{\prime \prime}$

Subcatchment 5S: Undetained Area

Summary for Pond 2P: Rain Garden

Pond 2P: Rain Garden

Summary for Link 6L: Summary

Inflow Area $=$	$0.273 \mathrm{ac}, 35.97 \%$	Impervious, Inflow Depth $=6.42^{\prime \prime}$	for 500 -yr event
Inflow $=$	$3.22 \mathrm{cfs} @$	12.10 hrs, Volume $=$	0.146 af
Primary $=$	$3.22 \mathrm{cfs} @$	12.10 hrs, Volume $=$	0.146 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-25.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

[^0]: ${ }^{1}$ Bruce Allison. Every Root and Anchor, Wisconsin's Famous and Historic Trees (Wisconsin Historical Society Press 2005), 20.

[^1]: ${ }^{2}$ The standard method calculates age based upon diameter at breast height (DBH) $\times 4.5$, which is the growth factor for black walnut trees. DNH ($52^{\prime \prime}$) x $4.5=234$.

[^2]: ${ }^{3} 734$ Huron Hill, 726 Oneida PI, 822 Miami Pass, 3833 Council Crest, 3810 Council Crest, 701 Ottawa Trail, 802 Huron Hill, 745 Miami Pass, 821 Miami Pass, 737 Oneida PI, 3710 Council Crest, 809 Ottawa Trail, 741 Oneida PI, 3614 Spring Trail, 722 Huron Hill, 713 Ottawa Trail, 722 Miami Pass, 833 Miami Pass, 3841 Nakoma Road, 3914 Cherokee Drive and 702 Oneida PI.
 ${ }^{4} 809$ Ottawa Trail, 745 Miami Pass, 822 Miami Pass, 701 Ottawa Trail, 3614 Spring Trail, 3833 Council Crest, 802 Huron Hill, 3706 Nakoma Road, 726 Oneida PI, and 734 Huron Hill.
 ${ }^{5} 3629$ Spring Trail, 3618 Nakoma Road, 3630 Spring Trail, 726 Oneida PI, 4010 Naheda Trail, 737 Oneida PI, 745 Miami Pass, 3621 Spring Trail, 3736 Nakoma Road and 821 Hiawatha Drive.

