

Assured Wetland Delineation Report

Cherokee Parks Driving Range

City of Madison, Dane County, Wisconsin May 1, 2023

Project Number: 20220861

Cherokee Parks Driving Range

City of Madison, Dane County, Wisconsin May 1, 2023

Prepared for:

Mr. Dennis Tiziani

Cherokee Parks Inc.

5000 N. Sherman Ave.

Madison, WI 53704

Prepared by:

Heartland Ecological Group, Inc.

506 Springdale Street

Mount Horeb, WI 53572

608-490-2450

www.heartlandecological.com

Prepared by: Scott Fuchs, Environmental

hut free

Scientist

Reviewed by: Keith Phelps, Environmental

Technician

Table of Contents

1.0	Introduction	4
2.0	Methods	5
2.1	Wetlands	5
3.0	Results and Discussion	6
3.1	Desktop Review	6
Ta	able 1. Summary of NRCS Mapped Soils within the Study Area	7
3.2	Field Review	8
Ta	able 2. Summary of Wetlands Identified within the Study Area	9
3.3	Other Considerations	10
4.0	Conclusion	11
5.0	References	12

Appendix A | Figures

Appendix B | APT Analysis

Appendix C | Wetland Determination Data Sheets

Appendix D | Site Photographs

Appendix E | Delineator Qualifications

Appendix F | NAIP Imagery

Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861 May 1, 2023

1.0 Introduction

Heartland Ecological Group, Inc. ("Heartland") completed an assured wetland determination and delineation on the Cherokee Parks Driving Range site on September 28, 2022 and April 19, 2023 at the request of Cherokee Parks Inc. Fieldwork was completed by Scott Fuchs, Environmental Scientist, an assured delineator qualified via the Wisconsin Department of Natural Resources' (WDNR's) Wetland Delineation Assurance Program (Appendix E, Qualifications). The 13.85-acre site (the "Study Area") is approximately ¼ mile northeast of the intersection of N Sherman Ave and Wheeler Rd, in the southwest ¼ of section 18 and northwest ¼ of Section 19, T8N, R10E, City of Madison, Dane County, WI (Figure 1, Appendix A). The purpose of the wetland delineation was to determine the location and extent of wetlands within the Study Area.

One (1) wetland area totaling approximately 1.44 acres was delineated and mapped within the Study Area (Figure 6, Appendix A). No waterways or waterbodies were observed within the Study Area. Wetlands, waterways, and water bodies discussed in this report may be subject to federal regulation under the jurisdiction of the U.S. Army Corps of Engineers (USACE), state regulation under the jurisdiction of the WDNR, and local zoning authorities. Heartland recommends this report be submitted to local authorities, the WDNR, and USACE for final jurisdictional review and concurrence.

Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861 May 1, 2023

2.0 Methods

2.1 Wetlands

Wetlands were determined and delineated using the criteria and methods described in the USACE Wetlands Delineation Manual, T.R. Y-87-1 ("1987 Corps Manual") and the applicable Regional Supplement to the Corps of Engineers Wetland Delineation Manual. In addition, the Guidance for Submittal of Delineation Reports to the St. Paul District USACE and the WDNR (WDNR, 2015) was followed in completing the wetland delineation and report.

Determinations and delineations utilized available resources including the U.S. Geological Survey's (USGS) *WI 7.5 Minute Series (Topographic) Map* (Figure 2, Appendix A), the Natural Resource Conservation Service's (NRCS) Soil Survey Geographic Database (SSURGO), U.S. Department of Agriculture's (USDA) *Web Soil Survey* (Figure 3, Appendix A), the WDNR's *Wetland Indicator* GIS data layer (Figure 4, Appendix A), the WDNR's *Wisconsin Wetland Inventory* GIS data layer (Figure 5, Appendix A), and aerial imagery available through the USDA Farm Service Agency's (FSA) National Agriculture Imagery Program (NAIP) and Dane County's Land Information Office. The USGS *National Hydrography Dataset* is included on Figures 2 and 5, Appendix A.

Wetland determinations were completed on-site at sample points, often along transects, using the three (3) criteria (vegetation, soil, and hydrology) approach per the 1987 Corps Manual and the Regional Supplement. Procedures in these sources were followed to demonstrate that, under normal circumstances, wetlands were present or not present based on a predominance of hydrophytic vegetation, hydric soils, and wetland hydrology.

Recent weather conditions influence the visibility or presence of certain wetland hydrology indicators. An assessment of recent precipitation patterns helps to determine if climatic/hydrologic conditions were typical when the field investigation was completed. Therefore, a review of antecedent precipitation in the 90 days leading up to the field investigation was completed. Using an Antecedent Precipitation Tool (APT) analysis developed by the USACE (Deters & Gutenson 2021), the amount of precipitation over these 90 days was compared to averages and standard deviation thresholds observed over the past 30 years to generally represent if conditions encountered during the investigation were normal, wet, or dry. Recent precipitation events in the weeks prior to the investigation were

May 1, 2023

also considered while interpreting wetland hydrology indicators. Additionally, the Palmer Drought Severity Index was checked for long-term drought or moist conditions (NOAA, 2018).

The uppermost wetland boundary and sample points were identified and marked with wetland flagging and located with a Global Navigation Satellite System (GNSS) receiver capable of sub-meter accuracy. In some cases, wetland flagging was not utilized to mark the boundary and the location was only recorded with a GNSS receiver, particularly in active agricultural areas. The GNSS data was then used to map the wetlands using ESRI ArcGIS Pro™ 3.0.3 software.

3.0 Results and Discussion

3.1 Desktop Review

Climatic Conditions

According to the APT analysis using the previous 90 days of precipitation data, conditions encountered at the time of both the September 28, 2022 and the April 19, 2023 field investigations were expected to be wetter than normal for the time of year (Appendix B). The Palmer Drought Severity Index was checked as part of the APT analysis, and the long-term conditions at the time of the September 28, 2022 field investigation were in the mild wetness range, and in the severe wetness range at the time of the April 19, 2023 field investigation. Both field investigations were completed outside the dry-season based on long-term regional hydrology data utilized in the WebWIMP Climatic Water Balance and computed as part of the APT analysis. The growing season was determined to be underway during the April 19, 2023 field investigation based on *Rhamnus cathartica* and *Lonicera x bella* leaf-out and new *Phalaris arundinacea* shoots emerging.

General Topography and Land Use

The topography within the Study Area was generally sloping to the north. A topographic high of approximately 868 feet above mean sea level (msl) is present in the southwestern portion of the Study Area, and a topographic low of approximately 854 feet above msl is present along the northern boundary (Figures 2 and 6, Appendix A). Land use within the Study Area consists of tennis courts in the northwestern portion, a driveway and

embankment in the western portion, a parking lot and driving range in the central portion, and an oak-hickory woodland in the eastern portion. Surrounding areas consist of the TPC Wisconsin golf course to the west, urban areas to the southwest, agricultural lands to the south and east, and Cherokee Marsh to the north. General drainage is to the north and west toward the Yahara River.

Soil Mapping

Soils mapped by the NRCS Soil Survey within the Study Area and their hydric status are summarized in Table 1. Wetlands identified during the field investigation are located primarily within areas mapped as hydric or partially hydric soils including wetland indicator soils (Figures 3 and 4, Appendix A).

Table 1. Summary of NRCS Mapped Soils within the Study Area

Soil symbol: Soil Unit Name	Soil Unit Component Soil Unit Component Percentage		Landform	Hydric status
Ev: Elvers silt loam	Elvers	85-95	Flood plains	Yes
	Otter	2-6	Depressions	Yes
	Orion	2-4	Flood plains	No
	Orion-Wet	1-5	Depressions	Yes
MdC2: McHenry silt loam, 6 to 12 percent slopes, eroded	McHenry- Eroded	85-95	Moraines	No
	Kidder- Eroded	3-8	Moraines	No
	Kendall	2-7	Drainageways	No
SaA: Sable silty clay loam, 0 to 2 percent slopes	Sable	85-100	Swales	Yes
	Ipava	0-7	Ground moraines	No
	Muscatune	0-6	Ground moraines	No
	Buckhart	0-4	Knolls	No
	Elburn	0-3	Outwash plains	No
ScB: St. Charles silt loam, 2 to 6 percent slopes	St. Charles	80-90	Till plains	No
	St. Charles- Moderately well drained	5-10	Till plains	No
	Virgil	3-5	Till plains	No
	Pella	2-5	Drainageways	Yes

ASSURED WETLAND DELINEATION REPORT

Cherokee Parks Inc.
Cherokee Parks Driving Range
Project #: 20220861

May 1, 2023

Soil symbol: Soil Unit Name	Soil Unit Component	Soil Unit Component Percentage	Landform	Hydric status
VrB: Virgil silt loam, 1 to 4 percent slopes	Virgil	85-95	Interdrumlins	No
	Sable	3-8	Interdrumlins	Yes
	St. Charles	2-7	Drumlins	No

Wetland Mapping

The Wisconsin Wetlands Inventory (WWI) mapping (Figure 5, Appendix A) depicts one (1) wetland area within the Study Area. One (1) emergent/wet meadow complex is located along the northern boundary of the Study Area and continues offsite to the north.

Waterway Mapping

The National Hydrography Dataset 24k (NHD) mapping (Figure 5, Appendix A) does not depict any waterways or waterbodies within the Study Area.

Aerial Photography

Available NAIP imagery of the Study Area from the period of 2004-2020 (Appendix F) was reviewed for evidence of wetland signatures and to gain insight into the site's recent history. In 2005 a driveway, driving range tee area, and parking lot were constructed in the western and central portions of the Study Area. In 2006 tennis courts were constructed in the northwestern portion of the Study Area. No other conspicuous land use changes are evident over this period. In nearly all of the imagery, wetland signatures are evident along the northern boundary of the Study Area.

3.2 Field Review

One (1) wetland was identified and delineated within the Study Area. Wetland determination data sheets (Appendix C) were completed at eight (8) sample points that were representative of the wetland and upland conditions near the boundary and where potential wetlands may be present based on the desktop review and field reconnaissance. Appendix D provides photographs, typically at the sample point locations of the wetlands and adjacent uplands. Photographs providing evidence of growing season conditions are also included. The wetland boundary and sample point locations are shown on Figure 6 (Appendix A) and the wetland is summarized in Table 2 and detailed in the following sections.

May 1, 2023

Table 2. Summary of Wetlands Identified within the Study Area

Wetland ID	Wetland Description	*Surface Water Connections	*NR151 Protective Area	Acreage (on-site)			
W-1	Wet Meadow/Shallow Marsh	Contiguous to the Yahara River	Less susceptible, 10-30 feet	1.44			
*Classification based on Heartland's professional opinion. Jurisdictional authority of wetland and waterway protective areas under NR 151 lies with the WDNR. Local zoning authorities may have additional restrictions. USACE has authority for determining federal jurisdiction of wetlands and waterways.							

Wetland 1 (W-1)

Wetland 1 (W-1) is a 1.44-acre complex of wet meadow and shallow marsh located in the northern portion of the Study Area. This wetland consists of the fringes of a large wetland complex that is located offsite to the north.

Dominant vegetation observed in W-1 included reed canary grass (*Phalaris arundinacea*, FACW), narrow-leaved cattail (*Typha angustifolia*, OBL), and cottonwood (*Populus deltoides*, FAC). Therefore, the wetland vegetation parameter was met.

The Depleted Below Dark Surface (A11), Thick Dark Surface (A12), Loamy Mucky Mineral (F1), Depleted Matrix (F3), and Redox Dark Surface (F6) hydric soil indicators were noted in W-1. Thus, the hydric soil parameter was met.

The primary wetland hydrology indicators of Surface Water (A1) and Saturation (A3) were noted within W-1, while secondary indicators included Geomorphic Position (D2) and a positive FAC-Neutral Test (D5). Therefore, the wetland hydrology parameter was met.

Wetland W-1 continues offsite to the north and appears to be contiguous with the Yahara River via excavated drainage ditches. The boundary of W-1 followed a well-defined topographic break at the toe of the embankment of the driving range access driveway and parking lot, and a poorly-defined topographic break adjacent to the woodland in the eastern portion of the Study Area.

Waterways

No waterways or waterbodies were observed within the Study Area.

May 1, 2023

3.3 Other Considerations

This report is limited to the identification and delineation of wetlands within the Study Area. Other regulated environmental resources that result in land use restrictions may be present within the Study Area that were not evaluated by Heartland (e.g. navigable waterways, floodplains, cultural resources, and threatened or endangered species).

Wisconsin Act 183 provides exemptions to permitting requirements for certain nonfederal wetlands. Nonfederal wetlands are wetlands that are not subject to federal jurisdiction. Exemptions apply to projects in urban areas with wetland impacts up to 1-acre per parcel. An urban area is defined as an incorporated area; an area within ½ mile of an incorporated area; or an area served by a sewerage system. Exemptions for nonfederal wetlands also apply to projects in rural areas with wetland impacts up to three (3) acres per parcel. Exemptions in rural areas only apply to structures with an agricultural purpose such as buildings, roads, and driveways. The determination of federal and nonfederal wetlands MUST be made by the USACE through an Approved Jurisdictional Determination (AJD). This report may be submitted to the USACE to assist with their determination.

Wis. Adm. Code NR 151 ("NR 151") requires that a "protective area" (buffer) be determined from the Ordinary High-Water Mark (OHWM) of lakes, streams and rivers, or at the delineated boundary of wetlands. Per NR 151.12, the protective area width for "less susceptible" wetlands is determined by using 10% of the average wetland width, no less than 10 feet or more than 30 feet. "Moderately susceptible" wetlands, lakes, and perennial and intermittent streams identified on recent mapping require a protective area width of 50 feet; while "highly susceptible wetlands" are associated with outstanding or exceptional resource waters in areas of special natural resource interest and require protective area width of 75 feet. Table 2 above lists the potential wetland buffers per NR 151 for each wetland identified based on Heartland's professional opinion. Please note that jurisdictional authority on wetland and waterway protective areas under NR 151 lies with the WDNR. Local zoning authorities and regional planning organizations may have additional land use restrictions within or adjacent to wetlands.

May 1, 2023

4.0 Conclusion

Heartland completed an assured wetland determination and delineation within the Cherokee Parks Driving Range site on September 28, 2022 and April 19, 2023 at the request of Cherokee Parks Inc. Fieldwork was completed by Scott Fuchs, Environmental Scientist, an assured delineator qualified via the WDNR Wetland Delineation Assurance Program (Appendix E). The Study Area lies in Sections 18 and 19, T8N, R10E, City of Madison, Dane County, WI (Figure 1, Appendix A).

One (1) wetland area was delineated and mapped within the 13.85-acre Study Area (Figure 6, Appendix A). The wetland, which may be classified as a complex of wet meadow and shallow marsh, totals approximately 1.44 acres within the Study Area.

Wetlands, waterways, and water bodies discussed in this report may be subject to federal regulation under the jurisdiction of the USACE, state regulation under the jurisdiction of the WDNR, and the local zoning authority. Heartland recommends this report be submitted to the USACE for final jurisdictional review and concurrence. Review by local authorities may be necessary for determination of any applicable zoning and setback restrictions.

Heartland recommends that all applicable regulatory agency reviews and permits are obtained prior to beginning work within the Study Area or within or adjacent to wetlands or waterways. Heartland can assist with evaluating the need for additional environmental reviews, surveys, or regulatory agency coordination in consideration of the proposed activity and land use as requested but is outside of the scope of the wetland delineation.

Experienced and qualified professionals completed the wetland determination and delineation using standard practices and professional judgment. Wetland boundaries may be affected by conditions present within the Study Area at the time of the fieldwork. All final decisions on wetlands and their boundaries are made by the USACE, the WDNR, and/or sometimes a local unit of government. Wetland determination and boundary reviews by regulatory agencies may result in modifications to the findings presented to the Client. These modifications may result from varying conditions between the time the wetland delineation was completed and the time of the review. Factors that may influence the findings may include but not limited to precipitation patterns, drainage modifications, changes or modification to vegetation, and the time of year.

Cherokee Parks Inc.
Cherokee Parks Driving Range
Project #: 20220861
May 1, 2023

5.0 References

Deters, J. & Gutenson, J. (2021). Antecedent Precipitation Tool (APT) [Electronic Source: python source code]. See: <u>GitHub - jDeters-USACE/Antecedent-Precipitation-Tool:</u>

Eggers, S. D., & D. M. Reed. (2014). *Wetland Plants and Plant Communities of Minnesota and Wisconsin* (V. 3.1). U.S. Army Corps of Engineers, Regulatory Branch, St. Paul, MN District. See: http://www.mvp.usace.army.mil/.

Environmental Laboratory (1987). *Corps of Engineers Wetlands Delineation Manual*, Tech. Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Lichvar, R.W., D. L. Banks, W. N. Kirchner, and N.C. Melvin. (2016). *The National Wetland Plant List:* 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X. See: http://www.phytoneuron.net/.

Midwestern Regional Climate Center. (2014). *cli-MATE* [climate data access tool]. See: http://mrcc.isws.illinois.edu/CLIMATE/.

National Oceanic and Atmospheric Administration (NOAA). (2015) Regional Climate Centers Applied Climate Information System. *WETS table*. See: http://agacis.rcc-acis.org.

NOAA National Center for Environmental Information. (2018) *Historic Palmer Drought Indices*. See: https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/psi/201512-201601.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (USDA). (2018). Soil Survey Geographic (SSURGO) Database. See: http://websoilsurvey.nrcs.usda.gov/ or http://datagateway.nrcs.usda.gov/.

Soil Survey Staff, Natural Resources Conservation Service, USDA. (2018). *Web Soil Survey*. See: http://websoilsurvey.nrcs.usda.gov/.

U.S. Army Corps of Engineers (USACE) and Wisconsin Department of Natural Resources (WDNR). (March 2015). "Guidance for Submittal of Delineation Reports to the St. Paul District Army Corps of Engineers and the Wisconsin Department of Natural Resources". See: http://dnr.wi.gov/topic/wetlands/documents/FinalWisconsinDelineationGuidance.pdf.

USACE. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0). (2011). ed. J.S. Wakely, R.W. Lichvar,

ASSURED WETLAND DELINEATION REPORT

C.V. Nobel, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

USACE St. Paul District & Minnesota Board of Water & Soil Resources. (July 2016). *Guidance for Offsite Hydrology/Wetland Determinations*. See:

http://www.mvp.usace.army.mil/Missions/Regulatory/Delineation/.

United States Department of Agriculture (USDA), Farm Service Agency (FSA). (2004, 2005, 2006, 2008, 2010, 2013, 2015, 2017, 2018, 2020) [Dane County, Wisconsin aerial photographs]. National Agriculture Imagery Program (NAIP). Salt Lake City, UT: Aerial Photography Field Office.

USDA, Natural Resource Conservation Service (NRCS). (2010). *Field Indicators of Hydric Soils in the United States*, Version 8.2. L.M. Vasilas, G.W. Hurt, and C.V. Noble (eds.). USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils.

United States Department of the Interior (USDI), U.S. Geological Survey (USGS). Wisconsin 7.5 Minute Series (Topographic) Maps. 1:24,000. Reston, VA.

USDI, USGS. National Hydrography Dataset (NHD) 24K scale data. See: https://nhd.usgs.gov/.

Wetland Training Institute, Inc (WTI). (2010). Pocket guide to hydric soil field indicators. (Robert J. Pierce, Ed.). (7th ed.). Glenwood, NM: Wetland Training Institute, Inc.

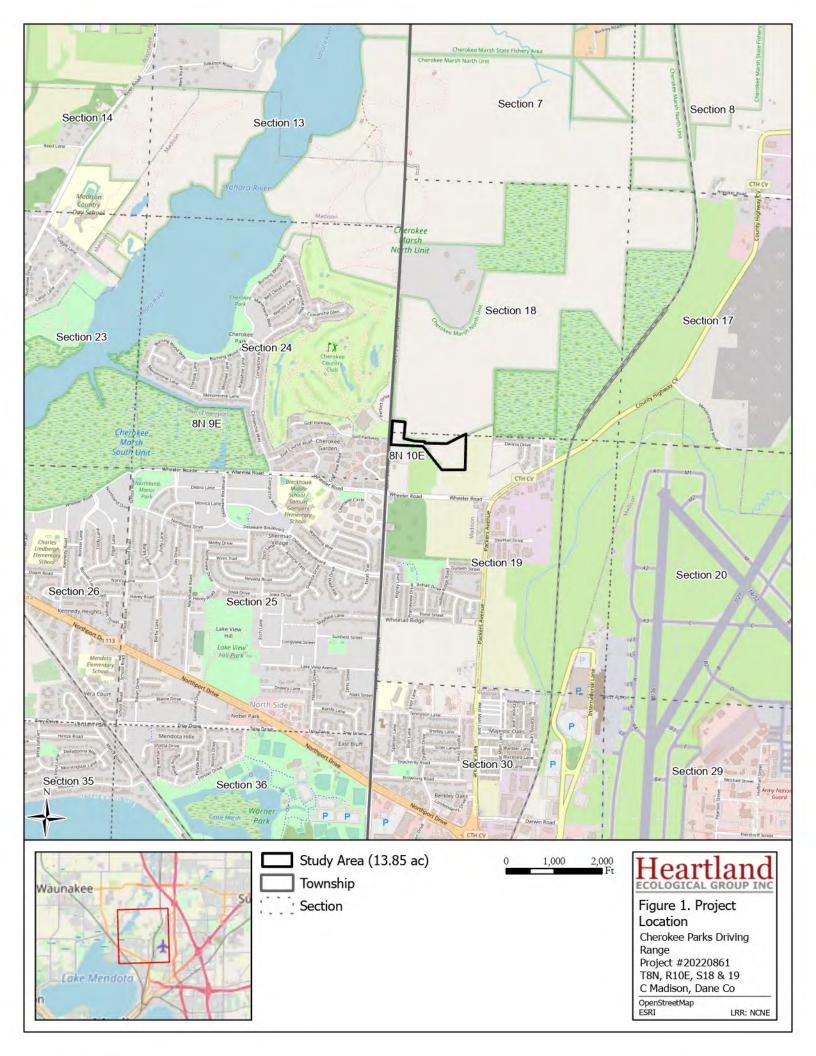
Willmott, C.J. and K. Matsuura. (2016). Web-Based Water-Budget Interactive Modeling Program (WebWIMP). University of Delaware Department of Geography. Newark, DE. See: climate.geog.udel.edu/~wimp/.

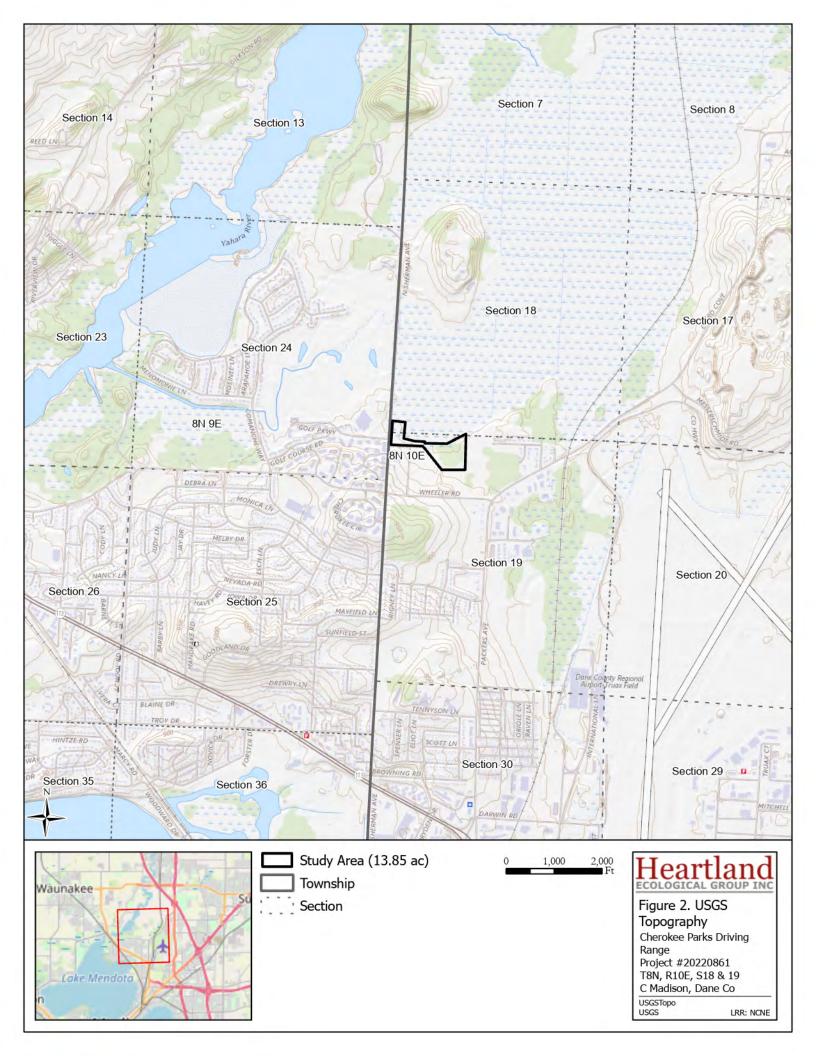
WDNR, Surface Water Data Viewer Interactive Web-mapping Tool. (2018). See: https://dnr.wi.gov/topic/surfacewater/swdv/.

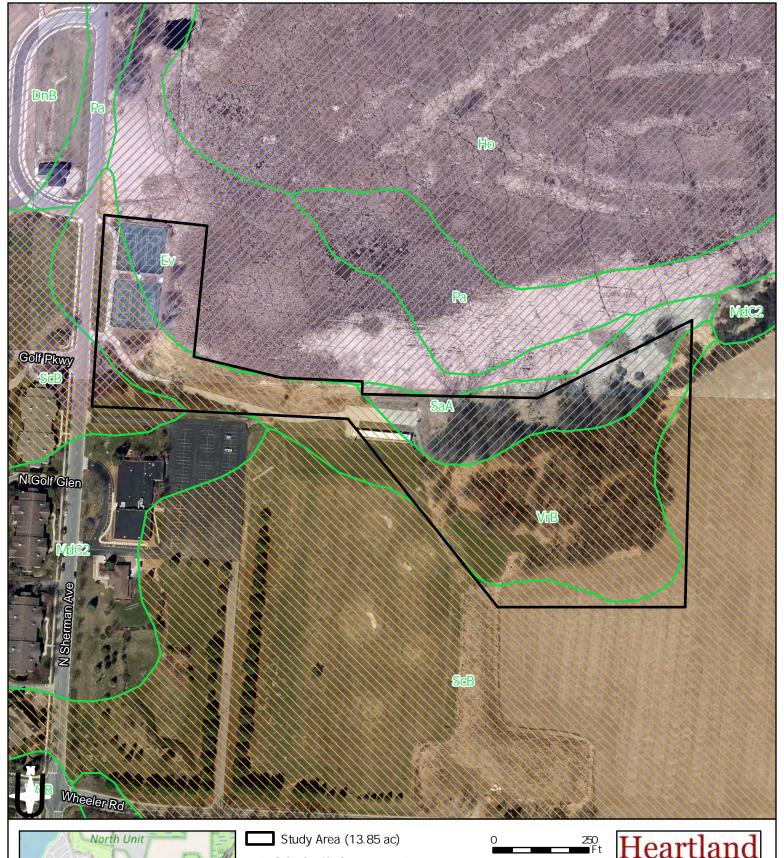
WDNR, Division of Water. (2010). [24k hydrography geospatial data layer]. See: ftp://dnrftp01.wi.gov/geodata/hydro_24k/.

WDNR, WiDNR Open Data. (2019). [Wisconsin Wetland Inventory Geodatabase]. See: https://www.arcgis.com/home/item.html?id=16119ac2100c4286ab8219bf03377ebf.

Woodward, D.E. ed. (1997). *Hydrology Tools for Wetland Determination*, WETS Analysis, Chapter 19. Engineering Field Handbook. USDA, NRCS, Fort Worth, TX.

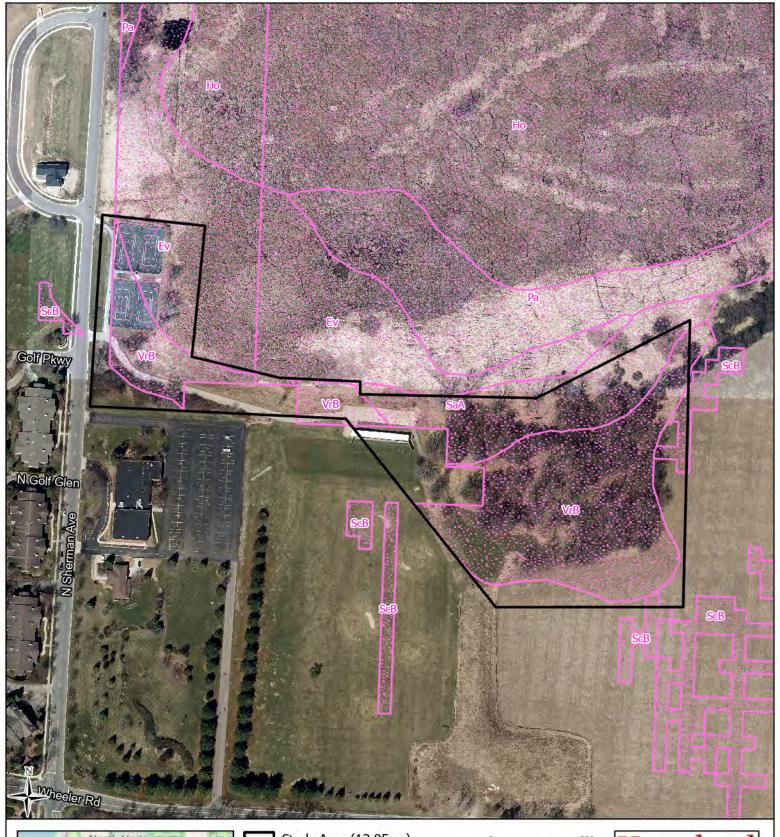

ASSURED WETLAND DELINEATION REPORT




Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861

May 1, 2023

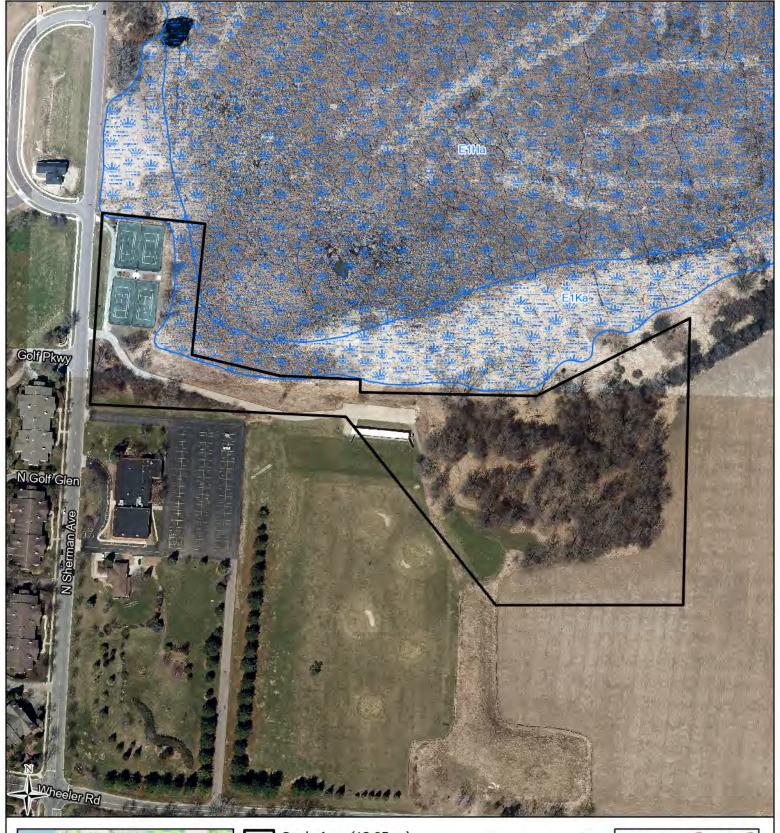
Appendix A | Figures



NRCS Soil Survey Data

- Hydric (100%)
- Predominantly Hydric (85-99%)
- Partially Hydric (16-84%)
- Predominantly Non-Hydric (1-15%)
 - Non-Hydric (0%)

Figure 3. NRCS Hydric Soils
Cherokee Parks Driving
Range
Project # 20220861
T8N, R10E, S19
C Madison, Dane Co 2020 Dane Co Orthophoto NRCS LRR: NCNE



Study Area (13.85 ac)
SWDV Wetland Indicators

Heartland ECOLOGICAL GROUP INC

Figure 4. SWDV
Wetland Indicators
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co
2020 Dane Co Orthophoto
WDNR LRR: NCNE

Study Area (13.85 ac)

■ WWI Wetland Points (No Features in Map Extent)

NHD Waterway (No Features in Map Extent)

Heartland ECOLOGICAL GROUP INC

Figure 5. Wisconsin
Wetland Inventory
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co
2020 Dane Co Orthophoto
WDNR, USGS LRR: NCNE

Study Area (13.85 ac)

Dane Co 1' Contours

Field Delineated Wetlands (1.44 ac)

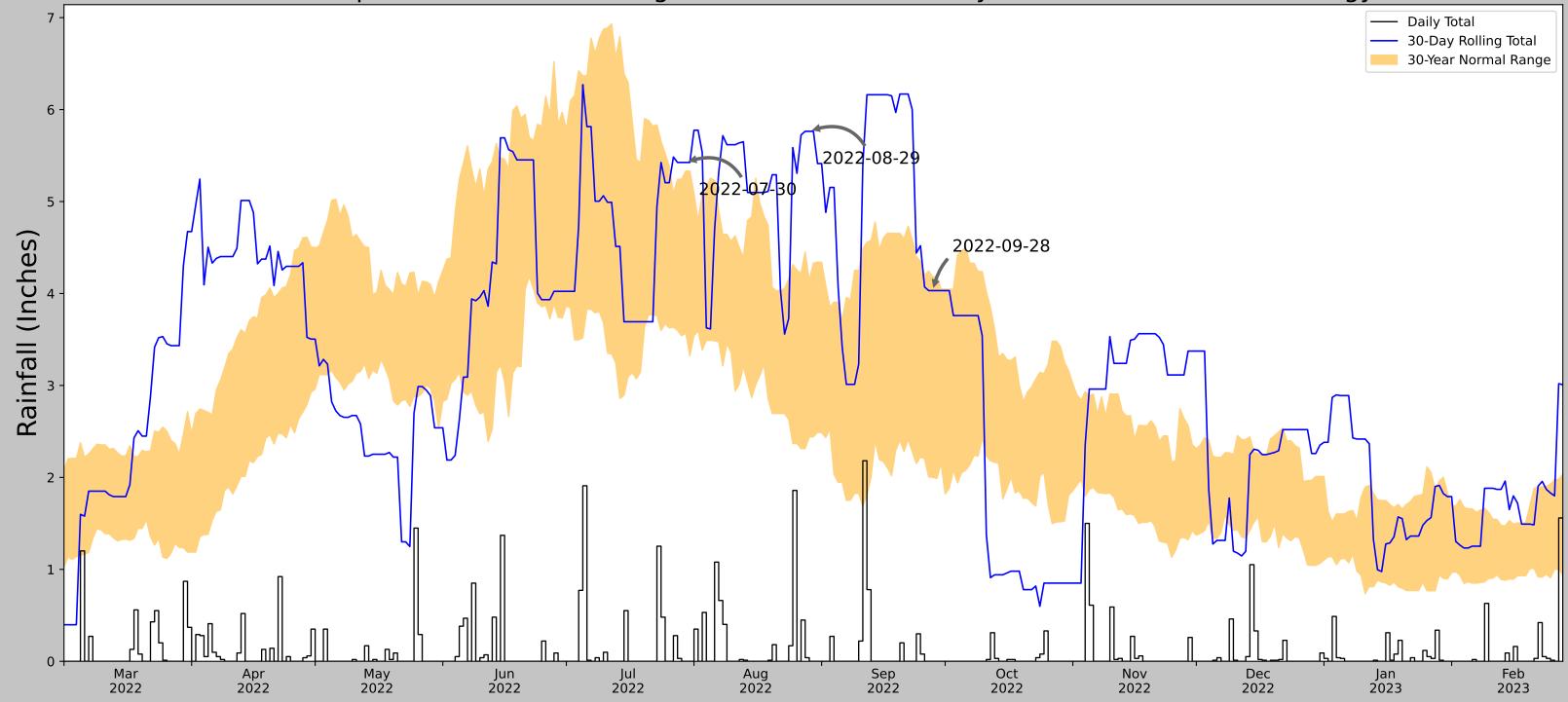
Offsite Wetland Boundary

Sample Points

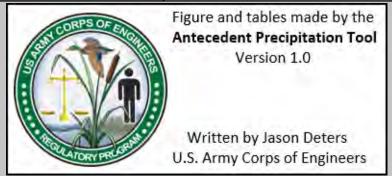
- Upland 0
- Wetland

Figure 6. Field Delineated Wetlands Cherokee Parks Driving

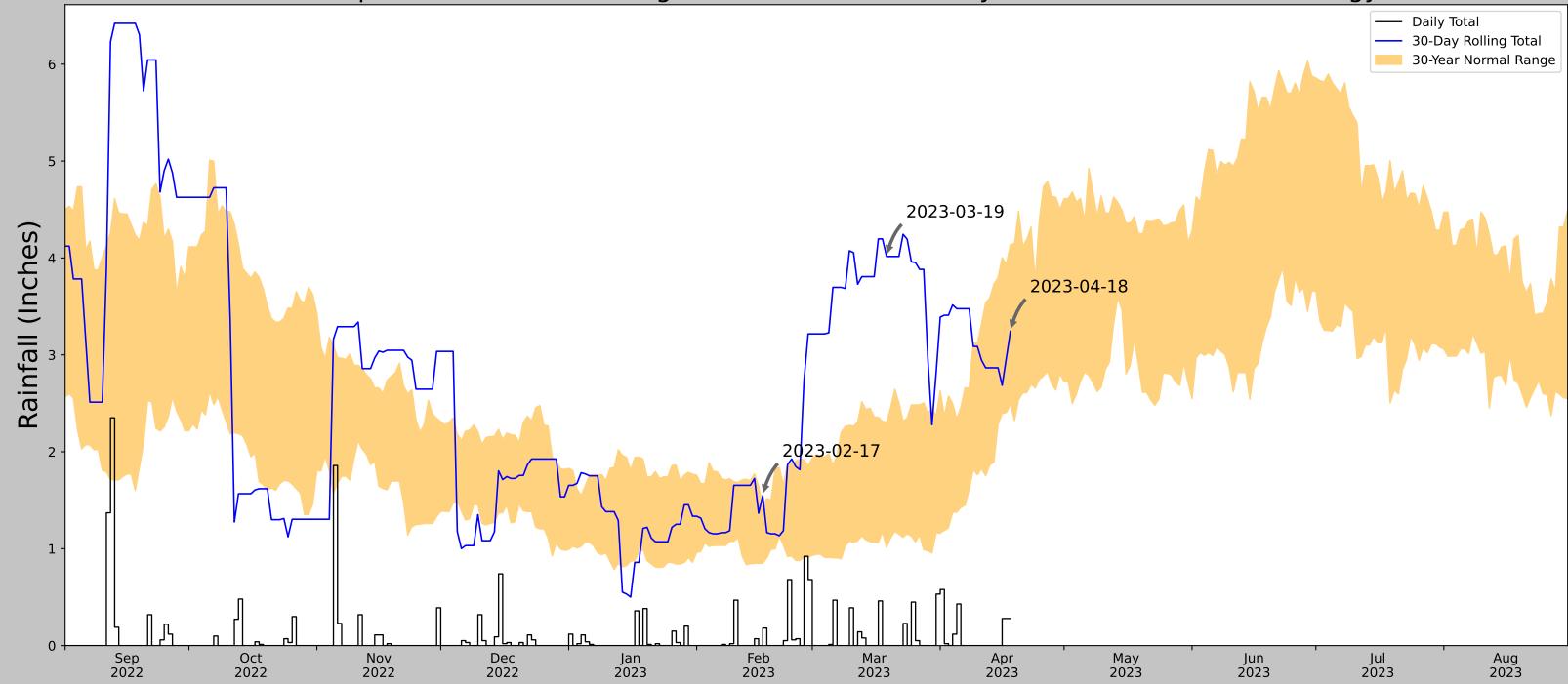
Range Project #20220861 T8N, R10E, S19 C Madison, Dane Co


2020 Dane Co Orthophoto County Co, HEG LRR: NCNE

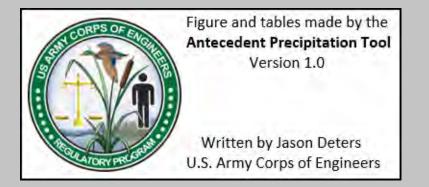
May 1, 2023


Appendix B | APT Analysis

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network


Coordinates	43.15025, -89.36114
Observation Date	2022-09-28
Elevation (ft)	859.941
Drought Index (PDSI)	Mild wetness
WebWIMP H ₂ O Balance	Wet Season

30 Days Ending	30 th %ile (in)	70 th %ile (in)	Observed (in)	Wetness Condition	Condition Value	Month Weight	Product
2022-09-28	2.000394	4.178347	4.031496	Normal	2	3	6
2022-08-29	2.438189	4.142126	5.76378	Wet	3	2	6
2022-07-30	3.569685	5.332284	5.425197	Wet	3	1	3
Result							Wetter than Normal - 15


Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
MADISON DANE CO RGNL AP	43.1406, -89.3453	858.924	1.04	1.017	0.469	11353	90

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network

Coordinates	43.15025, -89.36114
Observation Date	2023-04-18
Elevation (ft)	859.941
Drought Index (PDSI)	Severe wetness (2023-03)
WebWIMP H ₂ O Balance	Wet Season

30 Days Ending	30 th %ile (in)	70 th %ile (in)	Observed (in)	Wetness Condition	Condition Value	Month Weight	Product
2023-04-18	2.490158	4.138583	3.244095	Normal	2	3	6
2023-03-19	1.012205	2.305512	4.015748	Wet	3	2	6
2023-02-17	0.848032	1.444488	1.547244	Wet	3	1	3
Result							Wetter than Normal - 15

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
BEAVER DAM WWTP	43.4428, -88.8453	860.892	32.886	0.951	14.83	11319	87
BEAVER DAM 1.4 SSW	43.4472, -88.8526	871.063	0.476	10.171	0.219	0	1
TOWN OF WESTFORD	43.4719, -88.8825	875.0	2.743	14.108	1.273	6	0
WATERTOWN WWTP	43.1742, -88.7364	825.131	19.349	35.761	9.399	28	0
Linear Interpolation	N/A	N/A	N/A	N/A	N/A	0	1
Linear Interpolation	N/A	N/A	N/A	N/A	N/A	0	1

May 1, 2023

Appendix C | Wetland Determination Data Sheets

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range Cit	y/County: Dane County Sampling Date: 2022-09-28						
Applicant/Owner: Cherokee Parks State: Wisconsin Sampling Point: P01							
Investigator(s): Scott Fuchs Section, Township, Range: Sec 19 T008N R010E							
	relief (concave, convex, none): None Slope (%): 0-2						
	Long: <u>-89.361928</u> Datum: <u>WGS84</u>						
Soil Map Unit Name: Virgil silt loam, 1 to 4 percent slope							
	· · · ·						
Are climatic / hydrologic conditions on the site typical for this time of year?							
	sturbed? Are "Normal Circumstances" present? Yes No						
Are Vegetation, Soil, or Hydrology naturally proble	ematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing s	ampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes No✓	Is the Sampled Area						
Hydric Soil Present? Yes No✓	within a Wetland? Yes No						
Wetland Hydrology Present? Yes No✓	If yes, optional Wetland Site ID:						
Remarks: (Explain alternative procedures here or in a separate report.)							
	veen the driving range driveway and a wetland area						
to the north. An analysis of antecedent precipitat							
which indicates that conditions are wetter than no	ormai for the time of year.						
HYDROLOGY							
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)						
Surface Water (A1) Water-Stained Lea							
High Water Table (A2) Aquatic Fauna (B							
Saturation (A3) Marl Deposits (B1							
Water Marks (B1) Hydrogen Sulfide							
Sediment Deposits (B2) Oxidized Rhizospl Drift Deposits (B3) Presence of Redu	neres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) ced Iron (C4) Stunted or Stressed Plants (D1)						
	ction in Tilled Soils (C6) Geomorphic Position (D2)						
Iron Deposits (B5) Thin Muck Surface							
Instruction Visible on Aerial Imagery (B7) Other (Explain in I							
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)						
Field Observations:							
Surface Water Present? Yes No _ ✓ _ Depth (inches): _							
Water Table Present? Yes No _✓ Depth (inches): _							
Saturation Present? Yes No ✓ Depth (inches): _	Wetland Hydrology Present? Yes No✓						
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos,	previous inspections), if available:						
	,						
Daniela							
Remarks: No wetland hydrology indicators observed.							
The treatment try arenegy materials excerted.							

VEGETATION – Use scientific names of plants. Sampling Point: P01 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: _____) % Cover Species? Status **Number of Dominant Species** <u>0</u> (A) That Are OBL, FACW, or FAC: **Total Number of Dominant** <u>1</u> (B) Species Across All Strata: Percent of Dominant Species 0.00 (A/B) That Are OBL, FACW, or FAC: 5. ______ ___ ___ ___ ____ ____ 6. _____ ___ ___ ____ Prevalence Index worksheet: 7. ______ ____ Total % Cover of: Multiply by: _____ = Total Cover OBL species ______0.00___ x 1 = _____0.00___ Sapling/Shrub Stratum (Plot size: ______15____) FACW species $17.00 \times 2 = 34.00$ FAC species $0.00 \times 3 = 0.00$ FACU species <u>88.00</u> x 4 = <u>352.00</u> UPL species $5.00 \times 5 = 25.00$ Column Totals: <u>110.00</u> (A) <u>411.00</u> (B) Prevalence Index = B/A = 3.74**Hydrophytic Vegetation Indicators:** ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% ____ = Total Cover ___ 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 4 - Morphological Adaptations (Provide supporting 1. <u>Festuca rubra</u> ______ <u>70 Y FACU</u> data in Remarks or on a separate sheet) ___ Problematic Hydrophytic Vegetation¹ (Explain) 2. Solidago canadensis 15 N FACU 3. <u>Phalaris arundinacea</u> <u>15</u> <u>N</u> <u>FACW</u> ¹Indicators of hydric soil and wetland hydrology must _____ <u>5 N</u>UPL 4. Daucus carota be present, unless disturbed or problematic. 5. Symphyotrichum pilosum 3 N FACU **Definitions of Vegetation Strata:** 6. <u>Symphyotrichum novae-angliae</u> <u>2</u> <u>N</u> <u>FACW</u> Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. 8. _____ ___ ___ ____ Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. 9. ______ ____ ____ Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 110.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Yes ____ No _✓ Present? 0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Disturbed upland old field vegetation present within uplands adjacent to the existing driving range access driveway.

SOIL Sampling Point: P01

	ription: (D	escribe	to the dep	th needed to docun			or confirm	the absence	of indicators.)		
Depth (inches)	Color (r	Matrix noist)	%	Color (moist)	Features %	Type ¹	Loc ²	Texture	Remarks		
0-4	10YR		100			.,,,,,		SIL			
4-12	10YR		100						30% gravel, fill material		
<u> </u>	10111	0/ 1	100					OOL	3070 graver, mi material		
		_									
					-			-			
1Tunor C. Co		D Don	Lotion DM	Doduced Metrix MC	· Mookod	Cond Cr		21 postion	DI Doro Lining M Matrix		
Hydric Soil I		і, р=рері	ietion, Rivi	=Reduced Matrix, MS	=iviaskeu	Sand Gra	ans.		n: PL=Pore Lining, M=Matrix. s for Problematic Hydric Soils ³ :		
Histosol	(A1)			Polyvalue Belov	v Surface	(S8) (LRF	R,		Muck (A10) (LRR K, L, MLRA 149B)		
	oipedon (A2))		MLRA 149B)		DD D MI	DA 440D)		Prairie Redox (A16) (LRR K, L, R)		
Black His	stic (A3) n Sulfide (A	4)		Thin Dark Surfa Loamy Mucky M					Mucky Peat or Peat (S3) (LRR K, L, R) Surface (S7) (LRR K, L)		
Stratified	d Layers (A5	5)		Loamy Gleyed N			,		alue Below Surface (S8) (LRR K, L)		
	d Below Dar		e (A11)	Depleted Matrix					Dark Surface (S9) (LRR K, L)		
	ark Surface lucky Miner			Redox Dark Sur Depleted Dark S	, ,	7)		Iron-Manganese Masses (F12) (LRR K, L, Piedmont Floodplain Soils (F19) (MLRA 14			
Sandy G	leyed Matri			Redox Depressi		,		Mesic Spodic (TA6) (MLRA 144A, 145, 1			
	edox (S5)								arent Material (F21)		
	Matrix (S6) rface (S7) (I		ILRA 1491	3)				Very Shallow Dark Surface (TF12) Other (Explain in Remarks)			
_	, , ,			,							
Indicators of Restrictive I				etland hydrology mus	t be prese	ent, unless	disturbed	or problemation	С.		
	penetrab	,									
	thes): 12	0						Hydric Soil	Present? Yes No✓_		
Remarks:	,										
•				•					in this vicinity. Compacted		
									st of fill material likely		
introduce	ed when	the a	ccess I	ane to the driv	ing rar	nge wa	s const	tructed.			

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range City/Count	ry: Dane County Sampling Date: 2022-09-28
	State: Wisconsin Sampling Point: P02
Investigator(s): Scott Fuchs Section, T	ownship, Range: Sec 19 T008N R010E
Landform (hillslope, terrace, etc.): Toe Of Slope Local relief (c	
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.150475	
Soil Map Unit Name: Virgil silt loam, 1 to 4 percent slopes	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes _	•
Are Vegetation, Soil, or Hydrology significantly disturbed?	
Are Vegetation, Soil, or Hydrology naturally problematic?	
SUMMARY OF FINDINGS – Attach site map showing sampling	ng point locations, transects, important features, etc.
Trydrophytio vegetation i resemi:	the Sampled Area
Trydic Soft Tesent:	hin a Wetland? Yes No
Wetland Hydrology Present? Yes No ✓ If y Remarks: (Explain alternative procedures here or in a separate report.)	es, optional Wetland Site ID:
Sample point recorded at the immediate toe of slope of	of the driving range driveway embankment.
There is a small area of upland at the immediate toe of	,
north. An analysis of antecedent precipitation was per	
indicates that conditions are wetter than normal for the	
this location, but hydrophytic vegetation and wetland I	
HYDROLOGY	lydrology was labking.
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B)	
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) — Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C	
Sediment Deposits (B2) Oxidized Rhizospheres or	
Drift Deposits (B3) Presence of Reduced Iron	
Algal Mat or Crust (B4) Recent Iron Reduction in	
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks	s) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No ✓ Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No✓ Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No✓
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous	s inspections), if available:
Remarks:	
No primary wetland hydrology indicators observed.	
, , ,	

VEGETATION – Use scientific names of plants. Sampling Point: P02 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** <u>0</u> (A) That Are OBL, FACW, or FAC: **Total Number of Dominant** <u>1</u> (B) Species Across All Strata: Percent of Dominant Species 0.00 (A/B) That Are OBL, FACW, or FAC: 5. ______ ___ ___ ___ ____ ____ 6. _____ ___ ___ ____ Prevalence Index worksheet: 7. ______ _____ Total % Cover of: Multiply by: _____ = Total Cover OBL species <u>5.00</u> x 1 = <u>5.00</u> FACW species $23.00 \times 2 = 46.00$ Sapling/Shrub Stratum (Plot size: ______) FAC species $0.00 \times 3 = 0.00$ ______3 N FACW Cornus alba FACU species <u>95.00</u> x 4 = <u>380.00</u> UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>123.00</u> (A) <u>431.00</u> (B) Prevalence Index = B/A = 3.5**Hydrophytic Vegetation Indicators:** 6. ______ ___ _____ ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% ___ 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 4 - Morphological Adaptations (Provide supporting 1. <u>Festuca rubra</u> ______ <u>75</u> Y FACU data in Remarks or on a separate sheet) ___ Problematic Hydrophytic Vegetation¹ (Explain) 2. Solidago canadensis 20 N FACU 3. <u>Solidago gigantea</u> 10 N FACW ¹Indicators of hydric soil and wetland hydrology must 4. <u>Phalaris arundinacea 10 N FACW</u> be present, unless disturbed or problematic. 5 N OBL 5. Carex stricta **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 120.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Yes ____ No _✓ Present? 0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Some very loosely cespitose culms of carex stricta present, but vegetation consists primarily of upland old field vegetation at the immediate toe of slope.

SOIL Sampling Point: P02

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
		0/_	Color (n				Loc ²	Teyture	Remarks
			COIOI (II	10151)		туре	LUC		Remarks
10YR	2/1		10YR	4/1	5	D	M		
<u></u>									
10YR	5/2	85			15	C	<u>M</u>	С	
		· ——					·		
	, D=Dep	letion, RM	=Reduced N	Matrix, MS	=Masked	Sand Gr	ains.		PL=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ :
Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Redox (S5) Stripped Matrix (S6) Dark Surface (S8) (LRR R, MLRA 149B) MLRA 149B) Thin Dark Surface (S9) (LRR R, MLRA 149B) Loamy Mucky Mineral (F1) (LRR K, L) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B)						LRA 149B) , L)	2 cm Muck (A10) (LRR K, L, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Red Parent Material (F21) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) pr problematic.		
Layer (if ob	served):								
Type: Depth (inches):								Hydric Soil F	Present? Yes/ No
	Color (r. 10YR 10YR 10YR 10YR 10YR 10YR 10YR 10YR	Matrix Color (moist) 10YR 2/1 10YR 2/1 10YR 5/2 Concentration, D=Dep Indicators: I (A1) Ipipedon (A2) Idistic (A3) Idistic (A3) Idistic (A4) Idid Layers (A5) Id Below Dark Surface Idrark Surface (A12) Mucky Mineral (S1) Idistic (S5) Id Matrix (S6) Id Matrix (S6) Inface (S7) (LRR R, M Information of hydrophytic vegetal Information of the color of the	Matrix Color (moist) % 10YR 2/1 100 10YR 2/1 92 10YR 5/2 85 10YR 10YR 10YR 10YR 10YR 10YR 10YR 10YR	Matrix Color (moist) % Color (moist) 10YR 2/1 100 10YR 2/1 92 10YR 10YR 10YR 10YR 10YR 10YR 10YR 10YR	Matrix Color (moist) % Color (moist) % Color (moist) 10YR 2/1 100 10YR 2/1 92 10YR 4/1 10YR 4/6 10YR 5/2 85 10YR 4/6 10YR 5/2 85 10YR 4/6 Matrix Redox Color (moist) 10YR 4/6 10YR 4/6 10YR 5/2 85 10YR 4/6 Matrix, MS Indicators: I (A1) Polyvalue Below MLRA 149B) Isistic (A3) Thin Dark Surfa Isistic (A3) Loamy Mucky Matrix Indicators: I (A1) Loamy Mucky Matrix Indicators: I (A2) Polyvalue Below MLRA 149B) Isistic (A3) Character (A11) Depleted Matrix Indicators: I (A2) Polyvalue Below MLRA 149B) Isistic (A3) Character (A11) Depleted Matrix Indicators: I (A1) Polyvalue Below MLRA 149B) Isistic (A3) Character (A11) Depleted Matrix Indicators: I (A1) Polyvalue Below MLRA 149B) Isistic (A3) Character (A11) Depleted Matrix Indicators: I (A1) Polyvalue Below MLRA 149B) Isistic (A3) Character (A11) Depleted Matrix Indicators: I (A1) Polyvalue Below MLRA 149B) Isistic (A3) Character (A12) Polyvalue Below MLRA 149B	Matrix Color (moist) % Color (moist) % 10YR 2/1 100 10YR 2/1 92 10YR 4/1 5 10YR 4/6 3 10YR 5/2 85 10YR 4/6 15 Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Indicators: I (A1) Polyvalue Below Surface MLRA 149B) Id Layers (A5) Loamy Mucky Mineral (F1 Loamy Mucky Mineral (F2) and Loamy Gleyed Matrix (F2) and Loamy Gleyed Matrix (F3) ark Surface (A11) Depleted Dark Surface (F6) Mucky Mineral (S1) Color (S5) depleted Matrix (S4) Redox Depressions (F8) I (AR) Polyvalue Below Surface (S9) (Late of Color (Layers) (Lay	Matrix Color (moist) % Type! 10YR 2/1 100 10YR 2/1 92 10YR 4/1 5 D 10YR 4/6 3 C 10YR 5/2 85 10YR 4/6 15 C Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Gr. Indicators: I (A1) Polyvalue Below Surface (S8) (LRF MLRA 149B) Istic (A3) MLRA 149B) Istic (A4) Loamy Mucky Mineral (F1) (LRR K MC Loamy Mucky Mineral (F1) (LRR K MC Loamy Mucky Mineral (F2) Depleted Matrix (F2) I Ad Below Dark Surface (A11) Depleted Dark Surface (F7) I Gleyed Matrix (S4) Redox Dark Surface (F7) I Gleyed Matrix (S6) I Matrix (S6) I Matrix (S6) I Matrix (S6) I Modrophytic vegetation and wetland hydrology must be present, unless Layer (if observed):	Matrix Color (moist) % Color (moist) % Type¹ Loc² 10YR 2/1 100 10YR 2/1 92 10YR 4/1 5 D M 10YR 5/2 85 10YR 4/6 15 C M 10YR 5/2 85 10YR 4/6 15 C M 10YR 10YR 10YR 10YR 10YR 10YR 10YR 10YR	Matrix

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range City/C	County: Dane County Sampling Date: 2022-09-28
Applicant/Owner: Cherokee Parks	State: Wisconsin Sampling Point: P03
Investigator(s): Scott Fuchs Section	
Landform (hillslope, terrace, etc.): Toe Of Slope Local rel	
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.150573	
Soil Map Unit Name: Elvers silt loam	
Are climatic / hydrologic conditions on the site typical for this time of year? Y	` '
Are Vegetation, Soil, or Hydrology significantly distur	
Are Vegetation, Soil, or Hydrology naturally problems	
SUMMARY OF FINDINGS – Attach site map showing san	
Sommart of Findings - Attach site map showing san	
Hydrophytic Vegetation Present? Yes No	Is the Sampled Area within a Wetland? Yes No
Hydric Soil Present? Yes ✓ No	
Wetland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate report.)	If yes, optional Wetland Site ID:
Sample point recorded within shallow marsh veget	ation approx 50 feet from the toe of slope of the
driveway embankment. An analysis of antecedent	• • • • • • • • • • • • • • • • • • • •
APT tool, which indicates that conditions are wette	r than normal for the time of year.
	·
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	
Surface Water (A1) Water-Stained Leave	
High Water Table (A2) Aquatic Fauna (B13)	
Saturation (A3) Marl Deposits (B15)	
Water Marks (B1) Hydrogen Sulfide Od	or (C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospher	
Drift Deposits (B3) Presence of Reduced	
Algal Mat or Crust (B4) Recent Iron Reduction	
Iron Deposits (B5) Thin Muck Surface (0	· · · · · ·
Inundation Visible on Aerial Imagery (B7) Other (Explain in Rer	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No _ ✓ Depth (inches):	
Water Table Present? Yes No✓ Depth (inches): Saturation Present? Yes No✓ Depth (inches):	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:
Remarks:	
No primary wetland hydrology indicators observed	•
1	

VEGETATION – Use scientific names of plants. Sampling Point: P03 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** That Are OBL, FACW, or FAC: **Total Number of Dominant** ____ (B) Species Across All Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: ___100.00___(A/B) 5. ______ ___ ___ ___ ___ ____ 6. _____ ___ ___ ____ Prevalence Index worksheet: Total % Cover of: Multiply by: _____ = Total Cover OBL species 40.00 x 1 = 40.00FACW species $70.00 \times 2 = 140.00$ Sapling/Shrub Stratum (Plot size: ______) FAC species $0.00 \times 3 = 0.00$ FACU species 10.00 x 4 = 40.00UPL species $0.00 \times 5 = 0.00$ 3. ______ ___ _____ Column Totals: <u>120.00</u> (A) <u>220.00</u> (B) 4. _____ ___ ___ ____ Prevalence Index = B/A = 1.83**Hydrophytic Vegetation Indicators:** 6. _____ ___ ___ ____ ___ 1 - Rapid Test for Hydrophytic Vegetation ∠ 2 - Dominance Test is >50% ____ = Total Cover 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 ___ 4 - Morphological Adaptations¹ (Provide supporting 1. Phalaris arundinacea 50 Y FACW data in Remarks or on a separate sheet) ___ Problematic Hydrophytic Vegetation¹ (Explain) 2. <u>Typha angustifolia</u> 30 Y OBL ______<u>20 N FACW</u> Solidago gigantea ¹Indicators of hydric soil and wetland hydrology must ____ <u>10 N</u> FACU 4. Solidago canadensis be present, unless disturbed or problematic. 10 N OBL 5. Carex stricta **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. 9. ______ ____ _____ Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 120.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Present? Yes <u>√</u> No ____ 0 = Total Cover

Remarks: (Include photo numbers here or on a separate sheet.) Ruderal shallow marsh vegetation present.

SOIL Sampling Point: P03

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)											
Depth	Matrix		Redox Features								
(inches)	Color (moist) 10YR 2/1	 95	Color (n		<u>%</u> 5	Type'	M/PL	Texture MMI	Remarks		
7-16	10YR 2/1	65			5		M	SIC			
7-10	101R 2/1	30	1011	4/0				SIC			
16-24	101R 4/1 10YR 4/1		10YR	4/6	5	С	M	CL			
							·				
'Type: C=C Hydric Soil	oncentration, D=Deple Indicators:	etion, RM	I=Reduced N	Matrix, MS	=Masked	Sand G	ains.	Location:	PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :		
Histoso	I (A1)			lue Belov		(S8) (LR	R R,	2 cm Muck (A10) (LRR K, L, MLRA 149B)			
	pipedon (A2) istic (A3)			RA 149B) ark Surfa		RR R. M	LRA 149B)	Coast Prairie Redox (A16) (LRR K, L, R)5 cm Mucky Peat or Peat (S3) (LRR K, L, R)			
Hydroge	en Sulfide (A4)		_<_ Loamy	Mucky M	lineral (F	1) (LRR F		Dark Surface (S7) (LRR K, L)			
	d Layers (A5) d Below Dark Surface	(Δ11)		Gleyed Ned Matrix)		Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)			
-	ark Surface (A12)	(7(11)		Dark Sur					Iron-Manganese Masses (F12) (LRR K, L, R)		
-	Mucky Mineral (S1)			ed Dark S		7)		Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)			
-	Gleyed Matrix (S4) Redox (S5)		Redox	Depressi	ons (F8)			Red Parent Material (F21)			
Stripped	d Matrix (S6)							Very Sh	nallow Dark Surface (TF12)		
Dark Surface (S7) (LRR R, MLRA 149B) Other (Explain in Rema								Explain in Remarks)			
	of hydrophytic vegetati	on and w	etland hydro	logy mus	t be prese	ent, unles	s disturbed	or problematic.			
Type:	Layer (if observed):										
'' -	ches):							Hydric Soil I	Present? Yes No		
Remarks:				. ,							
Surface layer has high organic content (mucky mineral soil).											

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range City/Cou	inty: Dane County Sampling Date: 2022-09-28				
Applicant/Owner: Cherokee Parks	State: Wisconsin Sampling Point: P04				
Investigator(s): Scott Fuchs Section,	Township, Range: Sec 19 T008N R010E				
Landform (hillslope, terrace, etc.): Gentle Sideslope Local relief	(concave, convex, none): None Slope (%): 3-7				
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.150282					
Soil Map Unit Name: St. Charles silt loam, 2 to 6 percent slo					
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	•				
Are Vegetation, Soil, or Hydrology significantly disturbed					
Are Vegetation, Soil, or Hydrology naturally problematic					
SUMMARY OF FINDINGS – Attach site map showing samp					
[.	s the Sampled Area				
	vithin a Wetland? Yes No✓				
	yes, optional Wetland Site ID:				
Remarks: (Explain alternative procedures here or in a separate report.)					
Sample point recorded within a heavily disturbed shr	·				
corner of the Study Area. An analysis of antecedent					
APT tool, which indicates that conditions are wetter t	than normal for the time of year.				
HYDROLOGY					
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply)					
Surface Water (A1) Water-Stained Leaves (· · ·				
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)				
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)				
Water Marks (B1) Hydrogen Sulfide Odor					
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial					
Drift Deposits (B3) Presence of Reduced Ir					
Algal Mat or Crust (B4) Recent Iron Reduction i					
Iron Deposits (B5) Thin Muck Surface (C7)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remai					
Sparsely Vegetated Concave Surface (B8) Field Observations:	FAC-Neutral Test (D5)				
Surface Water Present? Yes No _ ✓ Depth (inches):					
Water Table Present? Yes No _✓ Depth (inches):					
Saturation Present? Yes No V Depth (inches):					
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous	ius inspections), if available:				
Remarks:					
No wetland hydrology indicators observed.					

VEGETATION – Use scientific names of plants. Sampling Point: P04 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** 2____ (A) That Are OBL, FACW, or FAC: 2. _____ ___ ___ ____ ____ **Total Number of Dominant** Species Across All Strata: ______ (B) Percent of Dominant Species That Are OBL, FACW, or FAC: 50.00 (A/B) 5. _____ ___ ___ ___ ___ ____ 6. ______ ____ ____ Prevalence Index worksheet: 7. ______ _____ Total % Cover of: Multiply by: _____ = Total Cover OBL species ______0.00___ x 1 = _____0.00___ FACW species $0.00 \times 2 = 0.00$ Sapling/Shrub Stratum (Plot size: ______) FAC species $40.00 \times 3 = 120.00$ 1. Lonicera X bella 50 Y FACU FACU species <u>55.00</u> x 4 = <u>220.00</u> 2. Rhamnus cathartica 30 Y FAC UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>95.00</u> (A) <u>340.00</u> (B) 4. _____ ___ ___ ____ Prevalence Index = B/A = 3.58**Hydrophytic Vegetation Indicators:** 6. ______ ___ ____ _____ ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% <u>80.0</u> = Total Cover ___ 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 4 - Morphological Adaptations (Provide supporting 1. Rhamnus cathartica 10 Y FAC data in Remarks or on a separate sheet) ___ Problematic Hydrophytic Vegetation¹ (Explain) 2. <u>Circaea canadensis</u> <u>5 Y FACU</u> ¹Indicators of hydric soil and wetland hydrology must _____ be present, unless disturbed or problematic. 5. ______ **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. 9. ______ ___ ___ ____ ____ Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 15.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Yes ____ No _✓ Present? 0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Heavily disturbed shrubby upland woodland.

SOIL Sampling Point: P04

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)												
Depth		Matrix			x Features	- 1 , 2	- .	5 .				
(inches) 0-12	Color (I		100	Color (moist)	%	Type ¹ Loc ²	Texture SIL	Remarks				
12-20	10R	4/3	60				SIL					
12 20	10YR	5/4	40									
	10111	0/ 1	_10_									
				-	. ——	-						
			-									
					· -							
							. <u> </u>					
							·					
							· <u></u>					
					· -							
1							2					
'Type: C=Co			etion, RM	=Reduced Matrix, MS	S=Masked S	Sand Grains.		_=Pore Lining, M=Matrix. Problematic Hydric Soils ³ :				
Histosol				Polyvalue Belov	v Surface (S8) (LRR R,		(A10) (LRR K, L, MLRA 149B)				
Histic Ep	pipedon (A2	2)		MLRA 149B)			Coast Prai	rie Redox (A16) (LRR K, L, R)				
Black Hi	stic (A3) n Sulfide (<i>A</i>	\4\		Thin Dark Surfa Loamy Mucky N		RR R, MLRA 149E		sy Peat or Peat (S3) (LRR K, L, R)				
	d Layers (A			Loamy Gleyed I		(LIXIX IX, L)	Dark Surface (S7) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L)					
Depleted	d Below Dai	rk Surface	e (A11)	Depleted Matrix	(F3)		Thin Dark	Thin Dark Surface (S9) (LRR K, L)				
	ark Surface			Redox Dark Sur		`		Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B)				
	lucky Miner Bleved Matri			Depleted Dark S Redox Depress)		Predmont Ploodplain Soils (P19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)				
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5)						Red Parent Material (F21)						
	Matrix (S6)							ow Dark Surface (TF12)				
Dark Su	rface (S7) (LRR R, N	ILRA 149I	3)			Other (Exp	plain in Remarks)				
		_		etland hydrology mus	t be preser	t, unless disturbed	d or problematic.					
Restrictive I	_ayer (if ob	served):										
Type:	-1						Hydric Soil Pre	sent? Yes No _✓_				
Remarks:	ches):						Trydric Con Tre	3cm: 1c3 1c5				
No hydrid	soil inc	dicator	s obse	rved								
i to ilyant	5 0011 II II	aroator	0 0000									

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range City/Co	ounty: <u>Dane County</u> Sampling Date: <u>2022-09-28</u>
Applicant/Owner: Cherokee Parks	State: Wisconsin Sampling Point: P05
Investigator(s): Scott Fuchs Sectio	n, Township, Range: <u>sec 19 T008N R010E</u>
Landform (hillslope, terrace, etc.): <u>Driveway Embankment</u> Local relie	ef (concave, convex, none): None Slope (%): 3-7
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.150169	
Soil Map Unit Name: Virgil silt loam, 1 to 4 percent slopes	
Are climatic / hydrologic conditions on the site typical for this time of year? Ye	
Are Vegetation, Soil, or Hydrology significantly disturb	
Are Vegetation, Soil, or Hydrology naturally problema	
SUMMARY OF FINDINGS – Attach site map showing sam	pling point locations, transects, important features, etc.
	Is the Sampled Area
Hydrophytic Vegetation Present? Yes No✓ Hydric Soil Present? Yes No✓	within a Wetland? Yes No✓
	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point recorded on the embankment of the o	driving range access drive approximately 100 ft
west of the parking lot. An analysis of antecedent p	recipitation was performed using the USACE
APT tool, which indicates that conditions are wetter	r than normal for the time of year.
	•
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves	
Surface Water (A1) Water-staffed Leaves Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odd	
Sediment Deposits (B2) Oxidized Rhizosphere	
Drift Deposits (B3) Presence of Reduced	
Algal Mat or Crust (B4) Recent Iron Reduction	
Iron Deposits (B5) Thin Muck Surface (C	
Instituted Countries (Countries of Countries (Countries (Coun	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	1710 110allal 1001 (20)
Surface Water Present? Yes No _ ✓ _ Depth (inches):	
Water Table Present? Yes No _✓ Depth (inches):	
Saturation Present? Yes No J Depth (inches):	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, prev	vious inspections), if available:
Remarks:	
No wetland hydrology indicators observed.	

VEGETATION – Use scientific names of plants. Sampling Point: P05 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** 0____(A) That Are OBL, FACW, or FAC: **Total Number of Dominant** 3____ (B) Species Across All Strata: Percent of Dominant Species 0.00 (A/B) That Are OBL, FACW, or FAC: 5. ______ ___ ___ ___ ___ ____ 6. _____ ___ ___ ___ Prevalence Index worksheet: 7. ______ ____ Total % Cover of: Multiply by: _____ = Total Cover OBL species ______0.00___ x 1 = _____0.00___ FACW species $25.00 \times 2 = 50.00$ Sapling/Shrub Stratum (Plot size: ______) FAC species $3.00 \times 3 = 9.00$ 1. Juglans nigra 5 Y FACU FACU species <u>120.00</u> x 4 = <u>480.00</u> UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>148.00</u> (A) <u>539.00</u> (B) Prevalence Index = B/A = 3.64**Hydrophytic Vegetation Indicators:** 6. ______ ____ _____ ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% 5.0 = Total Cover ___ 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: ______5 4 - Morphological Adaptations (Provide supporting 1. Solidago canadensis 60 Y FACU data in Remarks or on a separate sheet) ___ Problematic Hydrophytic Vegetation¹ (Explain) 2. Festuca rubra 50 Y FACU 3. <u>Phalaris arundinacea</u> <u>25 N FACW</u> ¹Indicators of hydric soil and wetland hydrology must _____ <u>5 N FACU</u> 4. Andropogon gerardii be present, unless disturbed or problematic. 3 N FAC 5. Panicum virgatum **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. 9. ______ ___ ___ ____ ____ Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 143.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Yes ____ No _✓ Present? 0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Old field vegetation present on the driveway embankment.

SOIL Sampling Point: P05

Matrix		h needed to document the indicator or confirm Redox Features		
Color (moist)	%	Color (moist) % Type ¹ Loc ²	Texture	Remarks
7.5YR 2.5/1	100		SIL	
10YR 5/4	100		SL	30% gravel
		Dadward Matrix MC Marked Cond Onice	21	Di Dana Linia a M Matrix
	etion, RIM=	Reduced Matrix, MS=Masked Sand Grains.		n: PL=Pore Lining, M=Matrix. s for Problematic Hydric Soils ³ :
pipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) I Matrix (S6)		MLRA 149B) Thin Dark Surface (S9) (LRR R, MLRA 149B) Loamy Mucky Mineral (F1) (LRR K, L) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	Coast 5 cm Dark to the polyty. Thin I lron-N Piedn Mesic Red F	Muck (A10) (LRR K, L, MLRA 149B) t Prairie Redox (A16) (LRR K, L, R) Mucky Peat or Peat (S3) (LRR K, L, R) Surface (S7) (LRR K, L) alue Below Surface (S8) (LRR K, L) Dark Surface (S9) (LRR K, L) Manganese Masses (F12) (LRR K, L, R) nont Floodplain Soils (F19) (MLRA 149B) E Spodic (TA6) (MLRA 144A, 145, 149B) Parent Material (F21) Shallow Dark Surface (TF12) (Explain in Remarks)
	on and we	tland hydrology must be present, unless disturbed	or problemati	ic.
	el	_	Usalvia Cai	I Dracout? Voc. No. /
ches): <u>19</u>			Hydric Soi	I Present? Yes No✓
c soil indicator	s obser	ved.		
	7.5YR 2.5/1 10YR 5/4 10YR 6/4 10Y	7.5YR 2.5/1 100 10YR 5/4 100 10YR 5/4 100 oncentration, D=Depletion, RM= Indicators: (A1) pipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface (A11) ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) If Matrix (S6) Irface (S7) (LRR R, MLRA 149B of hydrophytic vegetation and weth Layer (if observed): Inpenetrable gravel ches): 19	7.5YR 2.5/1 100 10YR 5/4 100 noncentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Indicators: (A1)	7.5YR 2.5/1 100 SIL 10YR 5/4 100 SIL 10YR 6/4 100 SIL 10YR 7/4

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks D	riving Range	City/County: Dai	ne County	Sampling Date:	2022-09-28
Applicant/Owner: Cherokee Park	S		State: V	Visconsin Sampling Poin	t: <u>P06</u>
Investigator(s): Scott Fuchs		Section, Township	o, Range: <u>sec 19 T</u>	008N R010E	
Landform (hillslope, terrace, etc.): Toe	Of Slope	Local relief (concave,	convex, none): Con	cave Slop	e (%): <u>0-2</u>
Subregion (LRR or MLRA): LRR K, MI					
Soil Map Unit Name: Virgil silt loa					
Are climatic / hydrologic conditions on th	•	•		•	,
Are Vegetation, Soil, or I					/ No
Are Vegetation, Soil, or I					
SUMMARY OF FINDINGS – A					atures, etc.
Hydrophytic Vegetation Present?	Yes _ ✓ No _			No	
Hydric Soil Present? Wetland Hydrology Present?	Yes✓ No _ Yes✓ No _				
Remarks: (Explain alternative procedu		, , ,	onal Wetland Site ID:		
Sample point recorded at parking lot. An analysis of indicates that conditions a	antecedent pre	ecipitation was per	formed using th		
HYDROLOGY					
Wetland Hydrology Indicators:				y Indicators (minimum of t	wo required)
Primary Indicators (minimum of one is				ce Soil Cracks (B6)	
Surface Water (A1)		Stained Leaves (B9)	Drainage Patterns (B10)		
High Water Table (A2)		Fauna (B13)	Moss Trim Lines (B16)		
Saturation (A3) Water Marks (B1)		eposits (B15) Jen Sulfide Odor (C1)	Dry-Season Water Table (C2) Crayfish Burrows (C8)		
Sediment Deposits (B2)		ed Rhizospheres on Living		ation Visible on Aerial Ima	agery (C9)
Octament Deposits (B2) Drift Deposits (B3)		ice of Reduced Iron (C4)		ed or Stressed Plants (D1	
Algal Mat or Crust (B4)		: Iron Reduction in Tilled Sc		norphic Position (D2)	,
Iron Deposits (B5)	·——	uck Surface (C7)	• • —	ow Aquitard (D3)	
Inundation Visible on Aerial Image		Explain in Remarks)		topographic Relief (D4)	
Sparsely Vegetated Concave Surf	ace (B8)		FAC-	Neutral Test (D5)	
Field Observations:					
Surface Water Present? Yes	No _✓_ Depth	(inches):			
Water Table Present? Yes	No✓ Depth	(inches):			
Saturation Present? Yes (includes capillary fringe)	No/ Depth	(inches):	Wetland Hydrology	Present? Yes✓	No
Describe Recorded Data (stream gaug	e, monitoring well, aer	ial photos, previous inspec	tions), if available:		
Demodus					
No primary wetland hydrol	ogy indicators	observed.			

VEGETATION – Use scientific names of plants. Sampling Point: P06 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** That Are OBL, FACW, or FAC: **Total Number of Dominant** 2 ___ (B) Species Across All Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: ___100.00___(A/B) 5. ______ ___ ___ ___ ____ ____ 6. _____ ___ ___ ____ Prevalence Index worksheet: 7. ______ ____ Total % Cover of: Multiply by: _____ = Total Cover OBL species 40.00 x 1 = 40.00FACW species $_{65.00}$ x 2 = $_{130.00}$ Sapling/Shrub Stratum (Plot size: 15) FAC species $0.00 \times 3 = 0.00$ FACU species $0.00 \times 4 = 0.00$ UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>105.00</u> (A) <u>170.00</u> (B) 4. _____ ___ ___ ____ Prevalence Index = B/A = 1.62**Hydrophytic Vegetation Indicators:** 6. _____ ___ ___ ____ ∠ 2 - Dominance Test is >50% ____ = Total Cover 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 ___ 4 - Morphological Adaptations¹ (Provide supporting 1. Phalaris arundinacea 50 Y FACW data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) 2. <u>Typha angustifolia</u> 30 Y OBL 3. <u>Symphyotrichum novae-angliae</u> 10 N FACW ¹Indicators of hydric soil and wetland hydrology must 4. <u>Symphyotrichum puniceum</u> <u>5</u> <u>N</u> <u>OBL</u> be present, unless disturbed or problematic. 5 N OBL 5. Carex stricta **Definitions of Vegetation Strata:** 6. Solidago gigantea ______ 5 N FACW Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. 8. _____ ___ ____ ______ Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 105.0 = Total Cover Woody Vine Stratum (Plot size: 30 Hydrophytic Vegetation Yes <u>√</u> No ____ Present? 0 = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Ruderal shallow marsh vegetation present at the toe of slope of the driveway embankment.

SOIL Sampling Point: P06

	cription: (D	escribe t	to the dep	oth needed	to docun	nent the i	ndicator	or confirm	the absence	of indicators.)	
Depth (inches)	Color (n	Matrix noist)	%	Color (n		x Features %	Type ¹	Loc ²	Texture	Remarks	
0-16	10YR			10YR	4/1	20	D	M	MMI		
				<u>10YR</u>	4/6	_5_		_M_			
16-24	<u>10YR</u>	5/1	95	<u>10YR</u>	4/6	_5_	C	<u>M</u>	C		
¹ Type: C=C Hydric Soil		, D=Depl	etion, RM	=Reduced N	/latrix, MS	S=Masked	Sand Gr	ains.		: PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :	
Histosol				Polyva	lue Belov	v Surface	(S8) (LR	R R,		luck (A10) (LRR K, L, MLRA 149B)	
	pipedon (A2))		MLF	RA 149B)				Coast I	Prairie Redox (A16) (LRR K, L, R)	
	istic (A3) en Sulfide (A	.4)				ce (S9) (L ⁄lineral (F1		LRA 149B) (, L)	5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L)		
Stratifie	d Layers (A5	5)		Loamy	Gleyed I	Matrix (F2)		. ,	Polyval	lue Below Surface (S8) (LRR K, L)	
	d Below Dar ark Surface		e (A11)		ed Matrix	(F3) rface (F6)			Thin Dark Surface (S9) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R)		
	Aucky Miner					Surface (F	7)		Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 149B)		
	Gleyed Matrix	x (S4)		Redox	Depress	ions (F8)			Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
	Redox (S5) d Matrix (S6)								Red Parent Material (F21) Very Shallow Dark Surface (TF12)		
	ırface (S7) (ILRA 149	B)					Other (Explain in Remarks)		
		_	ion and w	etland hydro	logy mus	t be prese	nt, unles	s disturbed	or problematic		
Restrictive Type:	Layer (if ob	served):									
	ches):								Hydric Soil	Present? Yes _ ✓ No	
Remarks:	Crics)										
Uppermo	ost soils	have I	high or	ganic co	ontent	(mucky	/ mine	ral soils	s).		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range C	ity/County: Dane County Sampling Date: 2023-04-19
Applicant/Owner: Cherokee Parks	State: Wisconsin Sampling Point: P07
Investigator(s): Scott Fuchs	ection, Township, Range: <u>sec 19 T008N R010E</u>
Landform (hillslope, terrace, etc.): <u>Toe Of Slope</u> Loca	al relief (concave, convex, none): None Slope (%): 0-2
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.150184	Long: <u>-89.358384</u> Datum: <u>WGS84</u>
Soil Map Unit Name: Sable silty clay loam, 0 to 2 percer	
Are climatic / hydrologic conditions on the site typical for this time of year	•
	isturbed? Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally prob	
	sampling point locations, transects, important features, etc.
	Is the Sampled Area
Hydrophytic Vegetation Present? Yes ✓ No Hydric Soil Present? Yes ✓ No	within a Wetland? Yes No
Hydric Soil Present? Yes _ ✓ _ No Wetland Hydrology Present? Yes _ ✓ _ No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.	
· ·	dow located in the eastern portion of the Study Area.
	formed using the USACE APT tool, which indicates
that conditions are wetter than normal for the tin	ne of year.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
✓ Surface Water (A1) Water-Stained Let	eaves (B9) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (E	
✓ Saturation (A3) Marl Deposits (B	
Water Marks (B1) Hydrogen Sulfide	
	oheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Red	
	uction in Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surfact Inundation Visible on Aerial Imagery (B7) Other (Explain in	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	Y 1 AC-Neutral Test (D3)
Surface Water Present? Yes _ ✓ No Depth (inches):	
Water Table Present? Yes ✓ No Depth (inches):	
Saturation Present? Yes _ ✓ No Depth (inches):	12 Wetland Hydrology Present? Yes _ ✓ No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos	previous inspections) if available:
Describe Necorded Data (stream gauge, monitoring well, acrial priotos	previous inspections), if available.
Remarks: There is some surface water nonding present w	rithin tire ruts / small depressions near the sample
point location.	itilit the rate / small depressions hear the sample
point loodiion.	

VEGETATION – Use scientific names of plants. Sampling Point: P07 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** 1. Populus deltoides 15 Y FAC That Are OBL, FACW, or FAC: **Total Number of Dominant** 2 ____ (B) Species Across All Strata: 3. ______ ____ ____ Percent of Dominant Species That Are OBL, FACW, or FAC: __100.00__ (A/B) 5. _____ ___ ___ ___ ___ ____ Prevalence Index worksheet: 7. ______ ___ _____ Total % Cover of: Multiply by: OBL species ______0.00___ x 1 = _____0.00___ FACW species $103.00 \times 2 = 206.00$ Sapling/Shrub Stratum (Plot size: 15) FAC species $15.00 \times 3 = 45.00$ FACU species $0.00 \times 4 = 0.00$ UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>118.00</u> (A) <u>251.00</u> (B) Prevalence Index = B/A = 2.13**Hydrophytic Vegetation Indicators:** 6. ______ ___ ____ _____ ___ 1 - Rapid Test for Hydrophytic Vegetation ∠ 2 - Dominance Test is >50% ____ = Total Cover 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 4 - Morphological Adaptations (Provide supporting 1. <u>Phalaris arundinacea</u> 100 Y FACW data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) 2. Solidago gigantea 3 N FACW ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 5. ______ **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height. 8. _____ Sapling/shrub - Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall. Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall. Woody vines - All woody vines greater than 3.28 ft in height. 103.0 = Total Cover Woody Vine Stratum (Plot size: 30

Remarks: (Include photo numbers here or on a separate sheet.)

RCG dominated wet meadow present at the toe of slope.

Yes <u>√</u> No ____

Hydrophytic Vegetation Present? SOIL Sampling Point: P07

(inches) 0-6	Color (m	Matrix	%	Color (r		x Features %	Type ¹	Loc ²	Texture	Remarks		
00	10YR	2/1	95	10YR	-	5	C	M	SIL	Remains		
6-15	2.5Y	5/1	97	10YR	4/6	3		N/I				
		5/1				<u> </u>		M				
<u>15-24</u>	_5Y	<u> </u>	_98_	<u>10YR</u>	4/6			IVI				
						. ——						
						· ——						
Type: C=Co	ncentration	, D=Depl	etion, RM	=Reduced N	Matrix, MS	S=Masked	Sand Gr	ains.	² Location: PL=	=Pore Lining, M=Matrix.		
lydric Soil I										roblematic Hydric Soils ³ :		
Histosol ((A1) ipedon (A2)				alue Belov RA 149B)	w Surface	(S8) (LR I	RR,		(A10) (LRR K, L, MLRA 149B) e Redox (A16) (LRR K, L, R)		
Histic Ep Black His					,		.RR R, M	LRA 149B)		Peat or Peat (S3) (LRR K, L, R)		
	n Sulfide (A					/lineral (F		., L)		e (S7) (LRR K, L)		
Stratified ∠ Depleted	l Layers (A5 l Below Darl		(A11)		/ Gleyed ted Matrix	Matrix (F2 ((F3))			elow Surface (S8) (LRR K, L) urface (S9) (LRR K, L)		
	rk Surface ((,,,,	✓ Redox						nese Masses (F12) (LRR K, L, R		
	ucky Minera					Surface (F	7)		Piedmont Floodplain Soils (F19) (MLRA 149Mesic Spodic (TA6) (MLRA 144A, 145, 149ERed Parent Material (F21)			
	leyed Matrix edox (S5)	((54)		Redox	Depress	ions (F8)						
Saliuv K	Sandy Redox (S5) Stripped Matrix (S6)								Very Shallow Dark Surface (TF12)			
Stripped			LRA 149	B)					Other (Expla	ain in Remarks)		
Stripped	Matrix (S6) face (S7) (L	.RR R, M										
Stripped Dark Sur	face (S7) (L			etland hydro	ology mus	st be prese	ent, unles:	s disturbed	or problematic.			
Stripped Dark Sur Indicators of	face (S7) (L	vegetati		etland hydro	ology mus	st be prese	ent, unles	s disturbed	or problematic.			
Stripped Dark Sur Indicators of	face (S7) (L	vegetati		etland hydro	ology mus	st be prese	ent, unles	s disturbed				
Stripped Dark Sur ndicators of estrictive L	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	st be prese	ent, unles:	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Surndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	et be prese	ent, unles:	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Surndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Surndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
_ Stripped _ Dark Surndicators of estrictive L Type: Depth (inc.	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Surndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unless	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Surndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur ndicators of estrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur ndicators of testrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur Indicators of Restrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unless	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur Indicators of Restrictive L Type:	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unless	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur Indicators of Restrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur Indicators of Restrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unless	s disturbed		ent? Yes <u>√</u> No		
Stripped Dark Sur Indicators of Restrictive L Type: Depth (inc	face (S7) (L hydrophytic ayer (if obs	vegetati		etland hydro	ology mus	t be prese	ent, unles	s disturbed		ent? Yes <u>√</u> No		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Cherokee Parks Driving Range City/	County: Dane County Sampling Date: 2023-04-19
Applicant/Owner: Cherokee Parks	State: Wisconsin Sampling Point: P08
Investigator(s): Scott Fuchs Sect	ion, Township, Range: <u>sec 19 T008N R010E</u>
Landform (hillslope, terrace, etc.): Sideslope Local re	lief (concave, convex, none): None Slope (%): 3-7
	Long: <u>-89.35855</u> Datum: <u>WGS84</u>
Soil Map Unit Name: Sable silty clay loam, 0 to 2 percent	
Are climatic / hydrologic conditions on the site typical for this time of year?	•
	rbed? Are "Normal Circumstances" present? Yes ✓ No
Are Vegetation, Soil, or Hydrology naturally problem	
	npling point locations, transects, important features, etc.
	Is the Sampled Area
Hydrophytic Vegetation Present? Yes No✓	within a Wetland? Yes No✓
Wetland Hydrology Present? Yes No _✓	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point recorded within a disturbed oak/hick	
	n was performed using the USACE APT tool, which
indicates that conditions are wetter than normal fo	r the time of year.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leave	es (B9) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	
Saturation (A3) Marl Deposits (B15)	
Water Marks (B1) Hydrogen Sulfide Oc	
Sediment Deposits (B2) Oxidized Rhizosphe	
Drift Deposits (B3) Presence of Reduce	
Algal Mat or Crust (B4) Recent Iron Reduction	
Iron Deposits (B5) Thin Muck Surface (· · · · · ·
Inundation Visible on Aerial Imagery (B7) Other (Explain in Re	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No _ ✓ Depth (inches): Saturation Present? Yes No _ ✓ Depth (inches):	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pro	evious inspections), if available:
Remarks:	
No wetland hydrology indicators observed.	
	l l

VEGETATION – Use scientific names of plants. Sampling Point: P08 Absolute Dominant Indicator **Dominance Test worksheet:** Tree Stratum (Plot size: 30) % Cover Species? Status **Number of Dominant Species** 1. Carya ovata _____ <u>75</u> <u>Y</u> <u>FACU</u> 2____(A) That Are OBL, FACW, or FAC: 2. Quercus macrocarpa <u>25 Y FACU</u> **Total Number of Dominant** 4 ___ (B) 3. <u>Prunus serotina 5 N FACU</u> Species Across All Strata: Percent of Dominant Species That Are OBL, FACW, or FAC: 5. _____ ___ ___ ___ ___ ____ Prevalence Index worksheet: 7. ______ ___ ___ ___ ____ ____ Total % Cover of: Multiply by: 105.0 = Total Cover OBL species ______0.00___ x 1 = _____0.00___ FACW species $0.00 \times 2 = 0.00$ Sapling/Shrub Stratum (Plot size: ______) FAC species $55.00 \times 3 = 165.00$ 1. Rhamnus cathartica 50 Y FAC FACU species <u>105.00</u> x 4 = <u>420.00</u> UPL species $0.00 \times 5 = 0.00$ Column Totals: <u>160.00</u> (A) <u>585.00</u> (B) Prevalence Index = B/A = 3.66**Hydrophytic Vegetation Indicators:** 6. ______ ___ ____ _____ ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% <u>50.0</u> = Total Cover ___ 3 - Prevalence Index is ≤3.0¹ Herb Stratum (Plot size: 5 4 - Morphological Adaptations (Provide supporting 1. Rhamnus cathartica 5 Y FAC data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Explain) 3. ______ ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 5. ______ **Definitions of Vegetation Strata:** Tree - Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.

8. _____ 9. ______ ___ ___ ____ ____ 5.0 = Total Cover Woody Vine Stratum (Plot size: 30 0 = Total Cover

Sapling/shrub - Woody plants less than 3 in. DBH

and greater than or equal to 3.28 ft (1 m) tall.

Herb - All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.

Woody vines - All woody vines greater than 3.28 ft in height.

Hydrophytic Vegetation Yes ____ No _✓ Present?

Remarks: (Include photo numbers here or on a separate sheet.)

Disturbed oak/hickory open woodland present in the sample point location.

SOIL Sampling Point: P08

Profile Des	cription: ([Describe t	to the dep	th needed	to docun	nent the i	ndicator	or confirm	the absence o	f indicators.)
Depth	Calar (Matrix	0/	Color (n		x Features		1 2	Tardina	Remarks
(inches) 0-9	Color (100	Color (n	10IST)	%	Type'	Loc ²	<u>Texture</u> SIL	Remarks
		3/2	97	10YR	5/6	3	C	M	SICL	
							C	M		
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ^2Location: PL=Pore Legislation PL=Pore Legislat								PL=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ : lick (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) ricky Peat or Peat (S3) (LRR K, L, R) riface (S7) (LRR K, L) lee Below Surface (S8) (LRR K, L) rick Surface (S9) (LRR K, L) riganese Masses (F12) (LRR K, L, R) the Floodplain Soils (F19) (MLRA 149B) podic (TA6) (MLRA 144A, 145, 149B) ent Material (F21) allow Dark Surface (TF12) explain in Remarks)		
Restrictive Type:	Layer (II OL	isei veu).								
	iches):								Hydric Soil P	resent? Yes No/
Remarks: No hydri	c soil in	dicator	s obse	rved.						

Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861 May 1, 2023

 $Appendix\ D\ |\ Site\ Photographs$

Solutions for people, projects, and ecological resources.

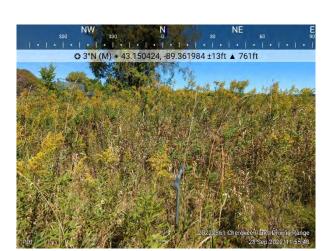


Photo #1 Sample point P01

Photo #3 Sample point P01

Photo #5 Sample point P02

Photo #2 Sample point P01

Photo #4 Sample point P01

Photo #6 Sample point P02

Photo #7 Sample point P02

Photo #9 Sample point P03

Photo #11 Sample point P03

Photo #8 Sample point P02

Photo #10 Sample point P03

Photo #12 Sample point P03

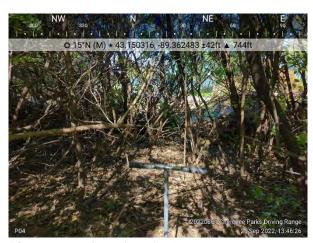


Photo #13 Sample point P04

Photo #15 Sample point P04

Photo #17 Sample point P05

Photo #14 Sample point P04

Photo #16 Sample point P04

Photo #18 Sample point P05

Photo #19 Sample point P05

Photo #21 Sample point P06

Photo #23 Sample point P06

Photo #20 Sample point P05

Photo #22 Sample point P06

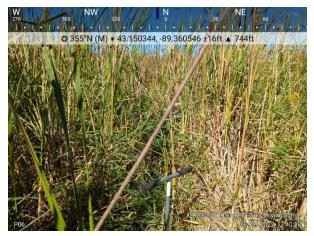


Photo #24 Sample point P06

Photo #25 Sample point P07

Photo #27 Sample point P07

Photo #29 Sample point P08

Photo #26 Sample point P07

Photo #28 Sample point P07

Photo #30 Sample point P08

Photo #31 Sample point P08

Photo #33 Evidence of Growing Season

Photo #35 Evidence of Growing Season

Photo #32 Sample point P08

Photo #34 Evidence of Growing Season

Photo #36 Evidence of Growing Season

Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861

May 1, 2023

Appendix E | Delineator Qualifications

Solutions for people, projects, and ecological resources.

Scott Fuchs, Environmental Scientist 506 Springdale Street, Mount Horeb, WI 53572 scott@heartlandecological.com

Heartland

Scott is a WDNR-assured wetland delineator and environmental scientist with expertise in wetland assessment and delineation, native plant communities of Wisconsin, botany, geographic information systems (GIS), and state/federal wetland regulations and permitting. Scott has been involved in the field of ecological conservation and restoration for over eight years working as a wetland delineator, environmental consultant, field restoration ecologist and crew leader, ecology research assistant, and GIS administrator. Since joining Heartland, Scott has completed tens of wetland delineations throughout Wisconsin, prepared wetland and waterway permit applications and obtained approval from the DNR and USACE, and performed vegetation and hydrology monitoring for wetland mitigation projects. Scott also provides technical support by assisting with natural area restoration planning, monitoring and management, developing GIS-based project mapping, collecting and interpreting historic aerial imagery, and performing analysis of GIS data sets. Scott implemented Heartland's current GIS workflow, which utilizes ArcGIS Pro, ArcGIS Online, sub-foot EOS Arrow GNSS receivers, and tablet devices to accurately record and view environmental data in the field. Scott achieved his professionally assured wetland delineator certification from the DNR in February 2022.

His experience includes: wetland determination and delineation, long-term vegetation and wildlife monitoring and reporting, collecting and processing monitoring well hydrology data, wetland mitigation bank viability analysis and planning, preparing state artificial and non-federal wetland exemption requests, preparing wetland and waterway permit applications, writing wetland delineation reports, rare species surveys, invasive species control, conducting prescribed burns, and invasive herbaceous, shrub, and tree removal.

Education

BS, Biology (Emphasis in Ecology), University of Wisconsin - Whitewater, Whitewater, WI, 2015

Basic Wetland Delineation Training, Continuing Education and Extension, UW - La Crosse, La Crosse, WI, 2019

Advanced Wetland Delineation Training, Continuing Education and Extension, UW - La Crosse, La Crosse, WI, 2019

Critical Methods in Wetland Delineation, Continuing Education and Extension, UW - La Crosse, 2019, 2020, 2021, 2022

Sedges: Identification and Ecology, UW -Milwaukee Field Station Workshop, Cedarburg, WI, 2022

Certifications and Training

Professionally Assured Wetland Delineator, Wisconsin Department of Natural Resources, 2022

Wildlife Fire Fighter Type 2, National Wildlife Coordinating Group, Incident Management Specialists, LLC, Madison, WI, 2017

Level One Chainsaw Safety Training, Forest Industry Safety & Training Alliance, Eau Claire, WI, 2016

Certified Pesticide Applicator (Category 6), Wisconsin Department of Trade and Consumer Protection, Madison, WI, 2016

Project Experience

Wetland Determinations and Delineations

Harmony Valley Farm, Vernon County, WI

Performed a wetland delineation within a 161-acre property containing organic vegetable farms fields, the Bad Axe River floodplain, old fields, woodlands, and coulees within Wisconsin's picturesque driftless area.

Morey Solar Field Wetland Delineation and Restoration, Dane County, WI

Assisted in the delineation of wetlands present on a 104-acre airport property, which was a proposed site for a solar field on the west side of Madison, WI. Following construction of the solar field, assisted in creating a native species planting and management plan.

Mallard Ridge and Glacier Ridge Landfill Pipelines: Walworth and Dodge Counties, WI

Performed wetland delineation along separate 1.5-mile and 3.6-mile corridors passing through savanna, upland prairie, wet prairie, hardwood swamps, agricultural fields, stream crossings, and highway right-of-way. Wetland delineation was necessary for construction of methane pipelines linking to nearby regional pipelines.

Nuemann Development: Port Washington Road Subdivision, Ozaukee County, WI

Performed a wetland determination and delineation within a 50-acre agricultural field. Compiled historic information to support an approved WI Act 183 artificial wetland exemption for wetlands located on site.

1520 LLC: Port Washington Road Commercial Development, Ozaukee County, WI

Performed a wetland determination and delineation within a highly disturbed 3-acre parcel containing clayey soils that was subsequently confirmed by WI DNR wetland regulatory staff. Compiled historic information to support an approved WI Act 183 artificial wetland exemption for wetlands located on site.

Private Landowner: Bear Creek Wetland Delineation and Driveway Crossing Permitting, Monroe County, WI Performed a wetland determination and delineation along a section of Bear Creek with several old oxbows to support culvert installation and minor wetland disturbance permitting for the purposes of installation of a ruraldriveway. This wetland delineation was subsequently confirmed by WI DNR wetland regulatory staff and was utilized in obtaining necessary state and federal permits. Prepared and obtained culvert installation and generalwetland disturbance permits from the WI DNR and USACE.

Wetland and Waterway Permitting

TPC Wisconsin (Formerly Cherokee Country Club): TPC Wisconsin Golf Course Improvements, Dane County, WI Performed a wetland delineation throughout the 153-acre golf course. Assisted senior Heartland staff in preparing and obtaining an individual permit application for wetland and waterway disturbance associated with course improvements. Assisted the Heartland team in planning ecological restoration of the course's 36 acres of wetland. Prepared GIS tools to guide ecological restoration crews in the field.

KL Engineering/Dane County Parks: Phase 2 Lower Yahara River Trail, Dane County, WI

Assisted senior Heartland staff in performing a wetland delineation along an unimproved recreational trail on the northern shore of Lake Kegonsa. Supported KL Engineering in their design of a boardwalk built on the footprint of the unimproved trail by recommending efforts to reduce impacts to wetlands. Drafted an individual wetland disturbance permit application for temporary and minor permanent impacts involved with the project. Facilitated the purchase of mitigation credits required by the permit approval to offset wetland impacts.

D'Onofrio, Kottke & Associates: Creek Crossing Development, Dane County, WI

Assisted residential developer and engineering firm by writing an application for, and obtaining, an individual permit needed for road crossings, culvert placement, and pedestrian bridge associated with a 32-acre residential development.

Epic: Epic Campus Expansion, Dane County, WI

Assisted in writing application materials for, and obtaining and individual permit for impacts to wetlands associated with an expansion of the Epic campus. Developed practicable alternatives analysis to minimize wetland impacts to the greatest extent practicable.

Hydrology Monitoring Well Data Analysis

Wisconsin DNR: Soik ILF Mitigation Site, Portage County, WI

Performed collection and processing of data from 14 monitoring wells present on a 60-acre ILF mitigation site. Performed analysis of hydrology data to determine if the site's wetland hydrology standard was met. Summarized results and created graphical representations of hydrology monitoring for end-of-year reporting to the WDNR and USACE.

Wisconsin DNR: Evansville ILF Mitigation Site, Rock County, WI

Performed baseline hydrology monitoring of a proposed wetland mitigation site to guide restoration activities. Performed analysis of historic aerial imagery to determine the location and extent of drain tile within the proposed mitigation site. Following ditch filling and tile breaking associated with the restoration project, performed monitoring and analysis of hydrology data collected from 12 on-site hydrology monitoring wells. Summarized results and created graphical representations of hydrology monitoring for end-of-year reporting to the WDNR and USACE.

Bear Development: Barnes Prairie Mitigation Bank Site, Kenosha County, WI

Performed collection and processing of data from 46 hydrology monitoring wells located throughout a 230-acre agricultural field. Analyzed data to determine if wetland hydrology was present in the location of the sampling wells. Produced graphical representations of precipitation and ground water level data.

Wisconsin DNR: Evansville ILF Mitigation Bank Site, Rock County, WI

Performed collection and processing of data from 9 hydrology monitoring wells within agricultural fields, disturbed wet meadow, and shrub-carr communities across a 40-acre site. Analyzed data to determine if wetland hydrology was present in the location of the sampling wells and to compile baseline information prior to wetland restoration work. Produced graphical representations of precipitation and ground water level data.

Vegetation, Wildlife, and Rare Species Monitoring

Wisconsin DNR: Soik ILF Mitigation Site, Portage County, WI

Established quantitative vegetation monitoring plots and performed vegetation monitoring of a 60-acre wetland mitigation bank in Wisconsin's central sands region. Vegetation monitoring was completed to assess progression of the site towards meeting regulatory performance standards. Vegetation monitoring including sample plot surveys and timed meander surveys. The results were summarized to assess the various performance metrics across a variety of wetland vegetative community and compensation types.

Kreyer Creek Compensatory Wetland Mitigation Bank Site, Monroe County, WI

Conducted quantitative vegetation monitoring of this 200+ acre compensatory wetland mitigation site. Vegetation monitoring was completed to assess progression of the site towards meeting regulatory performance standards. Vegetation monitoring including sample plot surveys and timed meander surveys. The results were summarized to assess the various performance metrics including florist quality assessments and diversity, invasive and noninvasive species relative cover, and prevalence indices of hydrophytic vegetation. The vegetation data and results were incorporate into the annual monitoring report required by the U.S. Army Corps of Engineers and Interagency Review Team.

Nantucket Conservation Foundation: Head of the Plains, Nantucket County, MA

Conducted vegetation monitoring, small mammal live-trapping, and insect pitfall trapping to collect data that is being used in a longitudinal study exploring the viability of different ecological management and restoration techniques in sandplain grassland habitat, a globally rare ecological community.

Nantucket Conservation Foundation: Head of the Plains, Nantucket County, MA

Installed acoustic bat monitoring devices and regularly downloaded the recorded data to determine the presence of different bat species. Assisted in mist-netting and radio telemetry tracking of federally threatened northern long-eared bats. Performed emergence counts of bat roosting locations discovered via radio telemetry tracking.

Nantucket Conservation Foundation: Coatue, Nantucket County, MA

Conducted vegetation monitoring for a graduate level study investigating the effects of cormorant nesting on plant communities in remote sand dune/shoal habitats.

Ecological Restoration and Invasive Species Management

Big Hollow Compensatory Wetland Mitigation Bank, Sauk County, WI

Assisted with the development of a Compensation Site Plan (CSP) for a nearly 200-acre compensatory wetland mitigation bank site as part of the Mitigation Banking Instrument (MBI). Completed various technical components of the CSP including assessment of the overall site characteristics and history, vegetation restoration plan, development of regulatory performance standards, and monitoring and management plan. Completed all site mapping and plans utilizing GIS.

Good Oak Ecological Services, Numerous Locations Throughout Dane County and Surrounding Areas, WI Performed invasive species management and ecological restoration activities in prairie, oak savanna, and oak woodland habitats throughout Dane County and surrounding areas. Activities included chemical and mechanical control of invasive species, invasive brush and tree removal with chainsaws and brush cutters, prescribed burns on small to medium (1-15 acres) sized prairies and oak woodlands, native vegetation seeding, and erosion control installation.

UW-Madison, UW-Madison Lakeshore Preserve, Dane County, WI

Performed invasive species management on thistle, garlic mustard, dame's rocket, and porcelain berry via chemical spraying and cut-and-treat methods.

Nantucket Conservation Foundation: Head of the Plains, Sanford Farm / Ram Pasture, Madequecham Valley, Nantucket County, MA

Performed cut-and-treat management of invasive Phragmites in salt marsh habitats.

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
1027 W St Paul Ave
Milwaukee WI, WI, 53233

Tony Evers, Governor Adam N. Payne, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

April 3, 2023

Scott Fuchs Heartland Ecological Group, Inc. 506 Springdale Street Mt. Horeb, WI 53572

Subject: 2023 Assured Wetland Delineator Confirmation

Dear Mr. Fuchs:

This letter provides Wisconsin Department of Natural Resources (WDNR) confirmation for the wetland delineations you conduct during the 2023 growing season. You and your clients will not need to wait for the WDNR to review your wetland delineations before moving forward with project planning. This will help expedite the review process for WDNR's wetland regulatory program. Your name and contact information will continue to be listed on our website at: http://dnr.wi.gov/topic/wetlands/assurance.html.

In the instance where a municipality may require a letter of confirmation for your work prior to moving forward in the local regulatory process, this letter shall serve as that confirmation. Although your wetland delineations do not require WDNR field review, inclusion of a Wetland Delineation Report is required for projects needing State authorized wetland, waterway and/or storm water permit approvals.

To comply with Chapter 23.321, State Statutes, please supply the department with a polygon shapefile of the wetland boundaries delineated within the project area. Please do not include data such as parcel boundaries, project limits, wetland graphic representation symbols, etc. If internal upland polygons are found within a wetland polygon, then please label as UPLAND. The shapefile should utilize a State Plane Projection and be overlain onto recent aerial photography. If a different projection system is used, please indicate in which system the data are projected. In the correspondence sent with the shapefile, please supply a brief description of each wetland's plant community (eg: wet meadow, floodplain forest, etc.). Please send these data to Calvin Lawrence (608-266-0756 or email at calvin.lawrence@wisconsin.gov).

If you or any client has a question regarding your status in the Wetland Delineation Professional Assurance Program, contact me by email at kara.brooks@wisconsin.gov or phone at 414-308-6780. Thank you for all your hard work and best wishes for the upcoming field season.

Sincerely,

Kara Brooks Wetland Identification Coordinator Bureau of Watershed Management

Cherokee Parks Inc. Cherokee Parks Driving Range Project #: 20220861

May 1, 2023

Appendix F | NAIP Imagery

Solutions for people, projects, and ecological resources.

Heartland ECOLOGICAL GROUP INC

Appendix: 2004-07-28 NAIP Aerial Imagery Cherokee Parks Driving

Cherokee Parks Driving Range Project #20220861 T8N, R10E, S19 C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2005-06-23 NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2006-07-15 NAIP Aerial Imagery Cherokee Parks Driving

Cherokee Parks Driving Range Project #20220861 T8N, R10E, S19 C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2008-08-10
NAIP Aerial Imagery
Cherokee Parks Driving

Cherokee Parks Driving Range Project #20220861 T8N, R10E, S19 C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2010-07-02
NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co
2010 NAIP
USDA

Heartland ECOLOGICAL GROUP INC

Appendix: 2013-07-04 NAIP Aerial Imagery Cherokee Parks Driving

Cherokee Parks Driving Range Project #20220861 T8N, R10E, S19 C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2015-10-11
NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co
2015 NAIP
USDA

Heartland ECOLOGICAL GROUP INC

Appendix: 2017-09-03 NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2018-03-19
Maxar Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co

2018 Sat. Imagery Maxar

Heartland ECOLOGICAL GROUP INC

Appendix: 2018-10-04
NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co

Heartland ECOLOGICAL GROUP INC

Appendix: 2020-08-04 NAIP Aerial Imagery
Cherokee Parks Driving
Range
Project #20220861
T8N, R10E, S19
C Madison, Dane Co