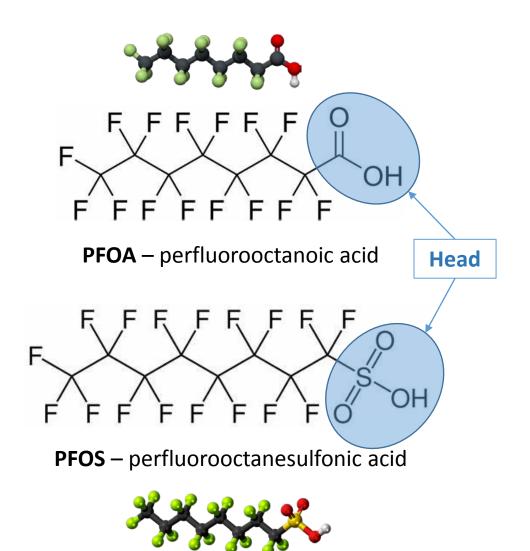
PFAS in Drinking Water

Water Utility Board Update 2-5-2019


Objectives

- Provide a general description of PFAS chemistry and its application
- Describe the current regulations relating to PFAS in drinking water
- Summarize our PFAS monitoring to date and future plans
- Provide a brief overview of the known contamination at Truax
- Introduce a potential framework for developing a PFAS action level

Per- and polyfluoroalkyl Substances (PFAS)

Family of 3000+ related chemicals

- Fluorinated organic compounds
- Important commercial applications
- High environmental risk
 - \checkmark Soluble in water
 - \checkmark Do not readily degrade
 - ✓ Mobile
- Human health risk
 - \checkmark Toxic at low levels
 - ✓ Bio accumulative
 - \checkmark Long half-life in humans

Important Commercial Application

Desirable Properties:

- Oil, stain, grease, and water repellant
- Heat resistant

Variety of Applications:

- Non-stick cookware
- Coatings on clothing, fabrics, food packaging
- Fire-fighting foam

Current State of PFAS Regulation

No federal or state drinking water standard	US EPA Health Advisory (2016) – PFOA & PFOS Some states have set guidelines or standards			
No current federal testing requirements	UCMR3 testing (2013-2015) – six PFAS chemicals Some states now require monitoring			
No standard test method	US EPA Method 537 (14 PFAS) – UCMR3 Some labs have modified Method 537 • Expanded list of PFAS measured, lower reporting levels • Little consistency between private contract labs			
No standard list of PFAS chemicals	UCMR3 included six PFAS contaminants • EPA Method 537 quantifies 14 PFAS • Some labs can now measure 40+ PFAS			

Madison Water Utility PFAS Testing, 2012-2018

	2012		2015		2017		2018	
	Tested	Results	Tested	Results	Tested	Results	Tested	Results
Well 06	х	ND	2X	ND				
Well 07			2X	ND	x	ND		
Well 08			2X	ND				
Well 09			2X	ND				
Well 11	х	ND	2X	ND				
Well 12			2X	ND				
Well 13			2X	ND				
Well 14	х	ND	2X	ND				
Well 15	ĺ		2X	ND	2X	31-35 ppt	2X	37-42 ppt
Well 16	x X	ND	2X	ND	2X	2.4-2.6 ppt	x	2.4 ppt
Well 17			2X	ND				
Well 18			2X	ND	x	ND		
Well 19			2X	ND				
Well 20			2X	ND				
Well 23	ĺ		2X	ND				
Well 24			2X	ND				
Well 25			2X	ND				
Well 26			2X	ND				
Well 27			2X	ND				
Well 28			2X	ND				
Well 29			2X	ND	x	ND		
Well 30	ĺ		2X	ND	ĺ		ĺ	
Well 31	İ		<u> </u>		<u> </u>			
PFAS Tested	6		6		6		12/18	
Test Method	EPA 537	RL: 10-90 ppt	EPA 537	RL: 10-90 ppt	Mod EPA 537	RL: 2 ppt	Mod EPA 537	RL: 2 ppt

ND = not detected at reporting limit (RL)

PFAS Testing at Well 15

Results in parts per trillion or ng/L

3/10/2015 9/15/2015

8/1/2017 12/4/2017 3

3/19/2018 10/16/2018

Perfluorosulfonic Acids (PFSAs)	Abbreviation							PFAS Tested but Not Detected	
perfluorobutanesulfonic acid	PFBS	<90	<90	2.4	2.1-2.3	2.4	2.6	perfluorononanoic acid	
perfluorohexanesulfonic acid	PFHxS	<30	<30	19	19-20	20	21	perfluorodecanoic acid	
perfluorooctanesulfonic acid	PFOS	<40	<40	5.4	4.8-5.0	4.4	5.1	perfluoroundecanoic acid	
								perfluorododecanoic acid	
Perfluorocarboxylic Acids (PFCAs)	Abbreviation							perfluorotridecanoic acid	
perfluorohexanoic acid	PFHxA	not tested	not tested	not tested	not tested	5.2	5.3	perfluorotetradecanoic acid	
perfluoroheptanoic acid	PFHpA	<10	<10	2.2*	<2.0	<2.0	2.2	N-Ethyl perfluorooctane sulfonamidoacetic acid	
perfluorooctanoic acid	PFOA	<20	<20	4.9	4.9-5.0	4.7	5.4	N-Methyl perfluorooctane sulfonamidoacetic acid	
								GenX	
								ADONA	
Combined PFOA + PFOS**		ND	ND	10	9.7-10	9.1	11	F-53B Major	
Total PFAS Concentration		ND	ND	34	31-32	37	42	F-53B Minor	

Notes: ND - not detected

* Found only in raw water; not in distribution system

** EPA Health Advisory Level for PFOA & PFOS: 70 ppt

On-going Monitoring: Well 15

- Monthly testing in 2019
- Modified EPA Method 537
- 24-30 PFAS chemicals
- Low detection limits

Lab A (24 PFAS) Perfluorobutanoic acid

Perfluorobutane sulfonic acid Perfluoropentanoic acid Perfluoropentane sulfonic acid Perfluorohexanoic acid Perfluorohexane sulfonic acid Perfluoroheptanoic acid Perfluoroheptane sulfonic acid Perfluorooctanoic acid Perfluorooctane sulfonic acid Perfluorooctanesulfonamide Perfluorononanoic acid Perfluorononane sulfonic acid Perfluorodecanoic acid Perfluorodecane sulfonic acid Perfluoroundecanoic acid Perfluorododecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid N-Methyl perfluorooctane sulfonamidoacetic acid N-Ethyl perfluorooctane sulfonamidoacetic acid 4:2 Fluorotelomer sulfonic acid 6.2 Fluorotelomer sulfonic acid 8:2 Fluorotelomer sulfonic acid

Lab B (30 PFAS)

Perfluorobutanoic acid Perfluorobutane sulfonic acid Perfluoropentanoic acid Perfluoropentane sulfonic acid Perfluorohexanoic acid Perfluorohexane sulfonic acid Perfluoroheptanoic acid Perfluoroheptane sulfonic acid Perfluorooctanoic acid Perfluorooctane sulfonic acid Perfluorooctanesulfonamide Perfluorononanoic acid Perfluorononane sulfonic acid Perfluorodecanoic acid Perfluorodecane sulfonic acid Perfluoroundecanoic acid Perfluorododecanoic acid Perfluorotridecanoic acid Perfluorotetradecanoic acid N-Methyl perfluorooctane sulfonamidoacetic acid N-Ethyl perfluorooctane sulfonamidoacetic acid 4.2 Eluorotelomer sulfonic acid 6:2 Fluorotelomer sulfonic acid 8:2 Fluorotelomer sulfonic acid 10:2 Fluorotelomer sulfonic acid HFPA-DA / GenX N-Methyl perfluorooctane sulfonamide N-Ethyl perfluorooctane sulfonamide N-Methyl perfluorooctane sulfonamidoethanol N-Ethyl perfluorooctane sulfonamidoethanol

Uncertain Health Risks

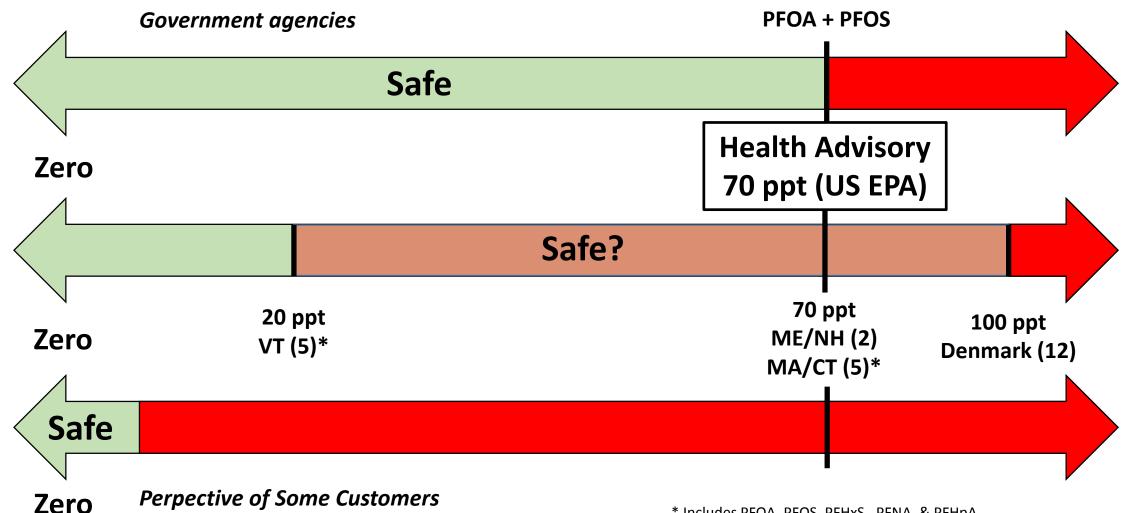
• US Environmental Protection Agency (EPA)

- 2016 Health Advisory 70 parts per trillion (ppt), sum of PFOA & PFOS
- Provisional Health Advisory (2009): PFOA 400 ppt; PFOS 200 ppt

• <u>DRAFT</u> Agency for Toxic Substances and Disease Registry (ATSDR)

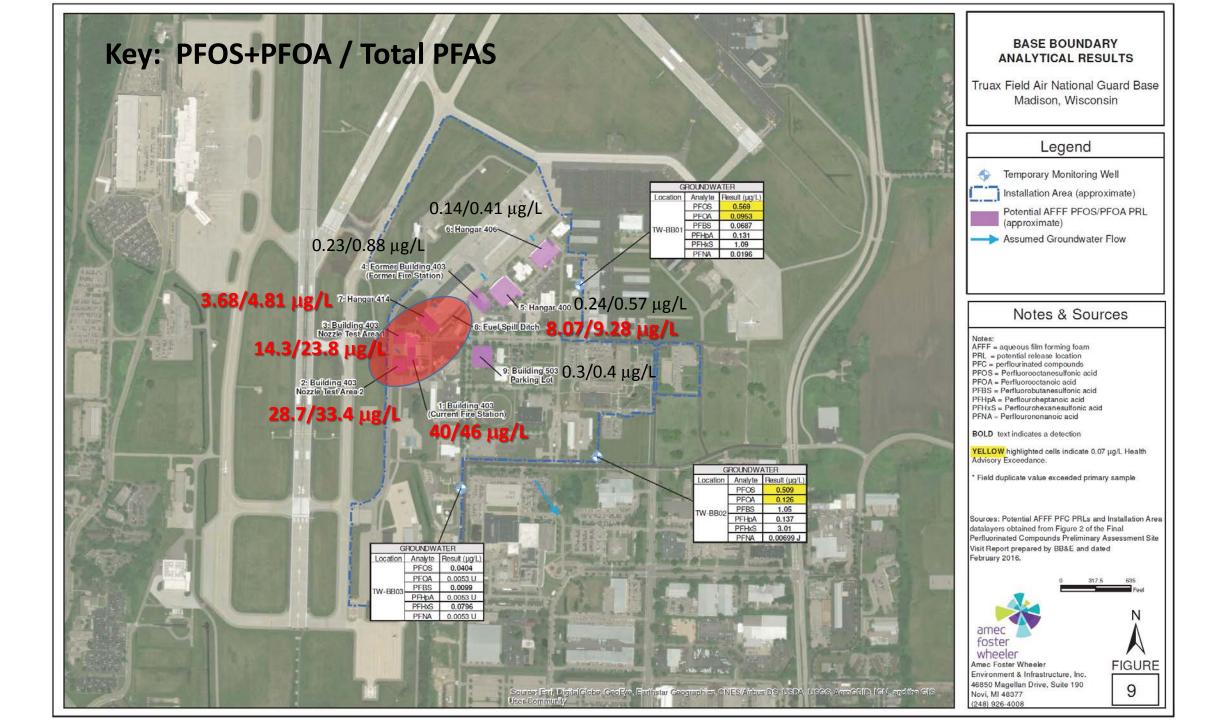
- In 2018, reviewed potential human health effects of 14 PFAS chemicals
- Most comprehensive review of human and animal studies to date
- <u>Proposed</u> minimal risk levels for four (4) PFAS

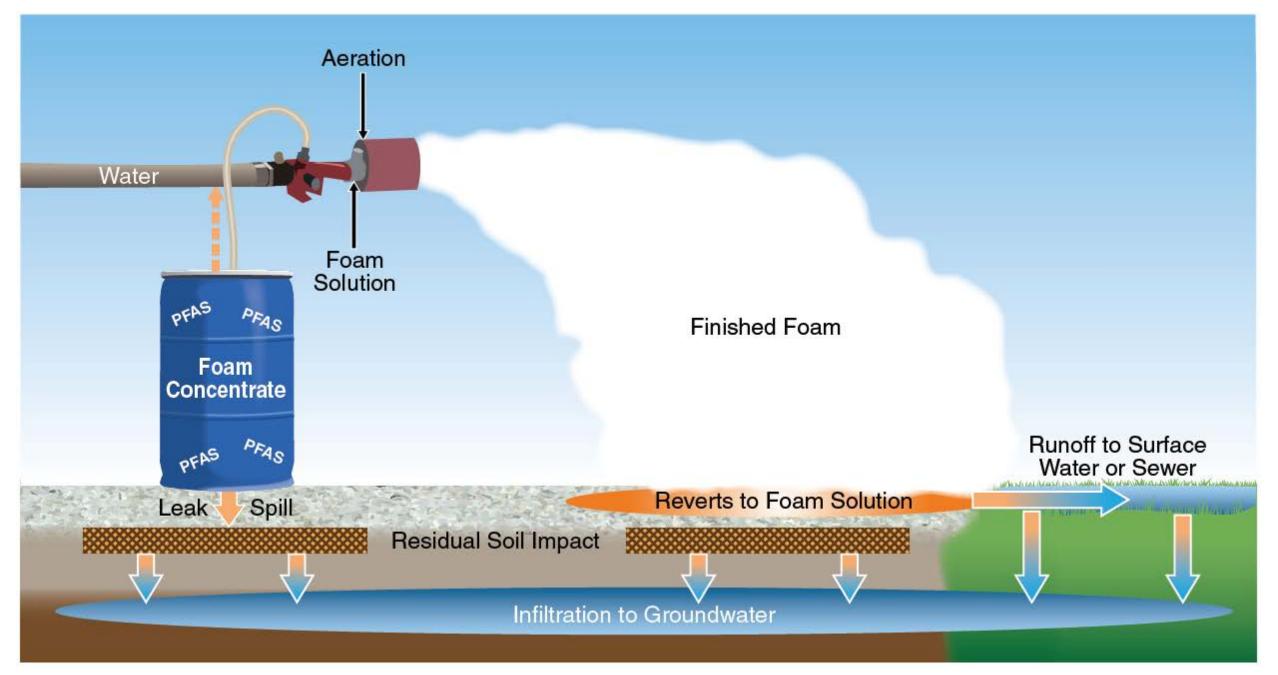
PFAS	Minimal Risk Level (mg/kg/day)	Drinking Water Equivalent – Adult	Drinking Water Equivalent – Infant	Well 15 (max)
PFOA	3 x 10 ⁻⁶	78 ppt	21 ppt	5.4
PFOS	2 x 10 ⁻⁶	52	14	5.4
PFHxS	2 x 10 ⁻⁵	517	140	21
PFNA	3 x 10 ⁻⁶	78	21	<2


Source: www.atsdr.cdc.gov/pfas/docs/PFAS_MRL_HA-H.pdf Accessed 1/25/19

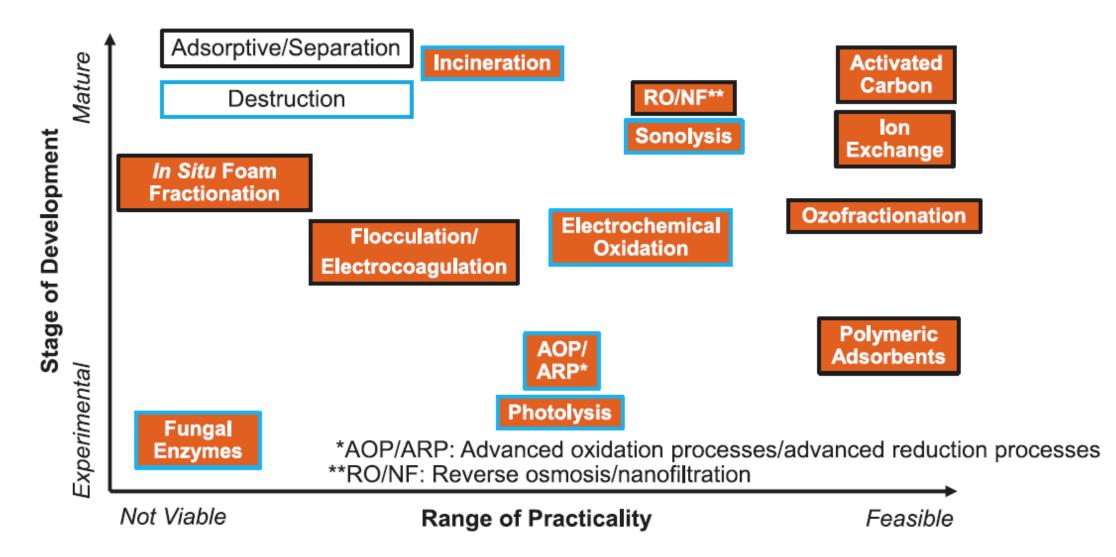
Regulatory and Guidance Levels Vary by State

State	Drinking Water Action	Compound	Level (ppt)
California	Interim Response Levels	Sum of PFOA and PFOS	70
Connecticut	Action Level	Sum of PFOA, PFOS, PFNA, PFHxS, PFHpA	70
Maine	Maximum Exposure Guidelines	Sum of PFOA and PFOS	70
Massachusetts	Office of Research & Standards Guideline	Sum of PFOA, PFOS, PFNA PFHxS, PFHpA	70
Minnesota	Health Based Guidance for Water Surrogate of PFOS HBV	PFOA PFOS PFHxS	35 27 27
New Hampshire	Rulemaking Initiated 12/31/18	PFOA PFOS Sum of PFOA and PFOS PFHxS PFNA	70 38 70 85 23
New Jersey	Adopted Regulation Regulation in Development Guidance Value	PFNA PFOA PFOS	13 14 13
North Carolina	Health Advisory	GenX	140
Vermont	Groundwater Quality Enforcement Standards	Sum of PFOA, PFOS, PFNA, PFHxS, PFHpA	20


Source: www.asdwa.org/pfas/ Accessed 1/18/19


Different Perspectives on What is "Safe"

* Includes PFOA, PFOS, PFHxS, PFNA, & PFHpA


Potential Sources of PFAS to UW 15

From History and Use of Per- and Polyfluoroalkyl Substances (PFAS); ITRC Factsheet, November 2017

PFAS Treatment Technologies for Water

Ross I, McDonough J, Miles J, et al. 2018. A review of emerging technologies for remediation of PFASs. Remediation 28:101-126.

Problem Scope

• Individual or "Total" PFAS

- PFOA & PFOS as surrogates
- Standard or "emerging" test method
- Applicable detection/reporting limits

Health Risk Assessment

- Health benchmark: lifetime HA or MCL
- Individual PFAS or additive approach; PFOA & PFOS
- Significant health risk reduction achievable

Treatment Alternatives

- Best Available Technologies (BATs)
- Complementary to organics removal
- Removal effectiveness
- Required pre- or post-treatment
- Handling of waste stream

Typical standard (MCL) setting process accounts for occurrence, risk reduction, feasibility of treatment, and economic impact to community

Economic Impact

- Capital costs (debt)
- Annual operating costs
- Cost-benefit analysis
- Affordability

Final Thoughts on PFAS

- Madison's current monitoring goes above and beyond SDWA requirements
- No test requirements; no standard method; no standard list of PFAS
- No regulatory or public health agency (US EPA, PHMDC, WI DHS, WDNR) that oversees our work has warned that Well 15 water is not safe for human use or recommended that we take Well 15 out of service
- MWU believes in transparency doing the tests, communicating the results, and helping our customers understand the significance of these results
- Although the issue is complex and uncertain, MWU is responsive to new science and the evolving regulatory environment
- Finally, MWU is committed to delivering water that is safe for all customers including the most vulnerable in our community